基于主成分分析和模糊数学的黄河小浪底水质监测与评价

武 俐1, 王祖恒1, 王 亮2, 赵同谦1, 金新苗1

(1. 河南理工大学 资源环境学院, 河南 焦作 454150; 2. 河南省济源生态环境监测中心, 河南 济源 459000)

摘要: 目的: 监测了黄河小浪底水库库区、大横岭、桐树岭 3 个断面, 分析了黄河小浪底水库水质现状及潜在污染源, 以期为其环境改善提供帮助。方法: 根据 3 个断面的水质实测数据, 采用主成分分析选择主要评价因子, 进行模糊评价法对水质进行评价。结果: 通过主成分分析得到 6 个主要水质因子, 分别是溶解氧 (DO)、五日生化需氧量 (BOD5)、氨氮 (NH3-N)、总氮 (TN)、总磷 (TP)、高锰酸钾指数 (CODMn)。其中 DO 和 BOD5 属于 I 类水质, 其值分别为 3.8~12.8 mg/L 和 0.9~1.7 mg/L 之间; NH3-N 属于 II 类水质, 其值为 0.03~0.72 mg/L; TN 超过 V 类水质, 其值在 2~4.88 mg/L 之间; TP 和 CODMn 属于 II 类水质, 其值分别为 0.02~0.05 mg/L 和 1.8~2.7 mg/L 之间。通过模糊综合评判法得到水库主要污染物为 TN 和 TP, 水质整体属于 III 类水质, 达到了水质要求。结论: 通过主成分分析与模糊综合评价法发现, 小浪底水库水质基本满足要求, 但存在 TN 和 TP 污染风险。

关键词: 小浪底水库; 主成分分析; 模糊综合评价法; 污染源

文献标识码: B 文章编号: 1000-288X(2020)05-0118-07 中图分类号: X824, X524

Monitering and Evaluation on Water Quality of Xiaolangdi Reservoir in Yellow River Based on Principal Component Analysis and Fuzzy Mathematics

Wu Li1, Wang Zuheng1, Wang Liang2, Zhao Tongqian1, Jin Xinniao1

(1. Department of Resources and Environment, Henan Polytechnic University, Jiaozuo, Henan, China; 2. He’nan Jiuyuan Ecological Environment Testing Center, Jiuyuan, Henan 459000, China)

Abstract: Objective: Three sections of Xiaolangdi Reservoir (Nanshan, Dahengling, and Tongshuling) in the Yellow River were monitored. The present situation of water quality and potential pollution sources of the reservoir were analyzed in order to provide help for its environmental improvement. Methods: According to the measured water quality data of the three sections, a principal component analysis was performed to select the main evaluation factors, and the fuzzy evaluation method was used to evaluate the water quality of the reservoir. Results: Six primary water quality factors were obtained from the principal component analysis: dissolved oxygen (DO), the 5-day biochemical oxygen demand (BOD5), ammonia nitrogen (NH3-N), total nitrogen (TN), total phosphorus (TP), and the potassium permanganate index (CODMn). The DO concentration and BOD5 belonged to class I, with values of 3.8~12.8 and 0.9~1.7 mg/L, respectively. The NH3-N concentration ranged from 0.03 to 0.72 mg/L, which was between classes I and II. The TN concentration ranged from 2 to 4.88 mg/L, which was worse than the standard of class V. The TP
concentration and COD$_{Mn}$ belonged to class II，and their values were 0.02—0.05 and 1.8—2.7 mg/L，respectively. [Conclusion] Through a principal component analysis and fuzzy comprehensive evaluation，it was found that the water quality of Xiaolangdi Reservoir basically met the legislative requirements；however，there was a risk of TN and TP pollution.

Keywords: Xiaolangdi Reservoir; principal component analysis; fuzzy comprehensive method; potential pollution source

1.2.2 研究方法

1.2.1 样品采集与分析 于 2018 年 1 月至 12 月对水坝库南、大横岭和桐树林 3 个检测断面进行为期一年的水质监测。采样时间为每月初，水样的采集与监测采用《水样采样技术指导（HJ495-2009）》和《地表水环境质量标准（GB3838-2002）》进行。13 项检测指标分别为总氮（TN）、总磷（TP）、氨氮（BH$_3$N）、氨氯酸盐氮（COD$_{Mn}$）、溶解氧（DO）、化学需氧量（COD）、氟化物（F）、铅（Pb）、铜（Cu）、锌（Zn）、砷（As）和镉（Cd）。

1.2.2 水质评价指标体系建立 主成分分析可避免评价因子选择的随意性，使评价结果更客观。通过线性组合，将多个原始变量转换为几个主要影响变量，确定影响水质的主要成分，只保留特征值大于 1 的主成分进行分析[9,11]。选取断面 13 项水质检测指标作为初选评价因子，利用 R 语言对初选评价因子进行分析。主成分贡献率及因子载荷见表 1。

| 表 1 主成分贡献率及因子载荷 |
|-----------------|-----------------|-----------------|-----------------|
| 指标 | 第 1 主成分 | 第 2 主成分 | 第 3 主成分 | 第 4 主成分 |
| DO | 0.584 | -0.167 | 0.164 | -0.560 |
| COD$_{Mn}$ | 0.785 | 0.000 | -0.384 | 0.000 |
| BOD$_s$ | 0.000 | 0.192 | -0.742 | -0.296 |
| NH$_3$-N | 0.102 | 0.624 | 0.000 | 0.438 |
| TN | 0.280 | 0.726 | -0.156 | -0.221 |
| TP | -0.305 | 0.776 | 0.000 | 0.000 |
| Pb | 0.811 | 0.309 | 0.112 | 0.000 |
| COD | 0.225 | 0.201 | 0.497 | -0.595 |
| Cu | -0.643 | 0.116 | -0.377 | 0.120 |
| Zn | 0.000 | 0.000 | 0.000 | 0.797 |
| F | 0.000 | 0.244 | 0.798 | -0.149 |
| As | 0.186 | 0.834 | 0.276 | 0.000 |
| Cd | -0.217 | 0.186 | 0.333 | 0.685 |
| 特征值 | 2.356 | 2.542 | 1.991 | 2.154 |
| 贡献率/% | 18.1 | 19.6 | 15.3 | 16.6 |
| 累积贡献率/% | 18.1 | 37.7 | 53.0 | 69.6 |

注: DO 表示溶解氧；COD$_{Mn}$表示高锰酸钾指数；BOD$_s$表示 5 d 生化需氧量；NH$_3$-N 表示氨氮；TN 表示总氮；TP 表示总磷；Pb 表示铅；COD 表示化学需氧量；Cu 表示铜；Zn 表示锌；F 表示氟化物；As 表示砷；Cd 表示镉。
由表1可知，有4个主成分特征值大于1，累计贡献率为68.6%。其中，第2主成分的贡献率最大，累计贡献率为19.6%；第3主成分贡献率最小，为15.3%。从各因子载荷值可以看出，第1主成分与Pb、COD_{mn}和DO密切有关；第2主成分与As、TN、TP和NH_{3}-N的载荷值较大；第3主成分与F和BOD_{5}密切有关；第4主成分与Zn和Cd密切有关。综上选择TN、TP、BOD_{5}、NH_{3}-N、COD_{mn}和DO6个指标作为评价因子，进行综合水质分析。

1. 2. 3 模糊综合评判法 模糊综合评判法是基于模糊数学的水质评价方法。综合考虑了各水质因子之间的相关性，较为客观的反映水质因子对于水质的贡献程度。在模糊综合评价中，数据与评价标准的处理方法，指标权重的确定方法和模糊模式的选择方法的选用尤为重要。分别采用归一化处理与线性内插法对实测数据与评价标准进行标准化，采用超标倍数法确定权重，加权海明距离法进行模糊模式的识别，计算评价对象隶属于评价标准等级的最小值来确定其质量等级。

水质监测数据归一化计算公式为：

$$
X_{ij} = \begin{cases}
0 & (X_{ij} \leq C_{ij}) \\
\frac{X_{ij} - C_{ij}}{C_{ij} - C_{ij}} & (C_{ij} < X_{ij} < C_{ij}) \\
1 & (X_{ij} \geq C_{ij})
\end{cases}$$

式中：X_{ij}代表第j个水质指标的第i个评价对象的实测值；C_{ij}与C_{ij}分别代表第j个水质指标的第i级与j级水质标准值。

水质标准数据归一化计算公式为：

$$
e_{ij} = \frac{C_{ij} - C_{ij}}{C_{ij} - C_{ij}}$$

式中：e_{ij}代表第i个水质指标的第j级标准的归一化值；C_{ij}、C_{ij}、C_{ij}分别代表第i个水质指标的第j级、l级、t级标准值。

评价指标权重的超标倍数法计算公式为：

$$
u = \frac{x_{ij}}{S_{ij}}$$

式中：v_{ij}代表水质指标i的权重值；S_{ij}代表第i种水质指标5个级别标准的平均值；x_{ij}代表水质指标i的实际测量值。

模糊模式的识别方法加权海明距离法计算公式为：

$$D(A, B) = \sum_{i=1}^{n} w_{i} | \mu_{A}(x_{i}) - \mu_{B}(x_{i}) |$$

式中：$D(A, B)$代表A对B的加权海明距离；w_{i}代表各水质指标的权重；$\mu_{A}(x_{i})$代表水质监测数据的隶属度；$\mu_{B}(x_{i})$代表水质标准的隶属度。

2 结果与讨论

2. 1 水质评价参数的分析

根据《地表水环境质量标准》（GB3838-2002），6项水质指标的质量标准见表2。小浪底水库水体各水质因子质量浓度动态变化情况如图1所示。7月，小浪底水库调水调沙后水位变低，水体采样点位于河段，距离水面较远，8月未能采到水样。

<table>
<thead>
<tr>
<th>表2</th>
<th>国家地表水环境质量标准</th>
</tr>
</thead>
<tbody>
<tr>
<td>评价因子</td>
<td>I</td>
</tr>
<tr>
<td>DO $<\leq$</td>
<td>7.5</td>
</tr>
<tr>
<td>BOD_{5} $<\leq$</td>
<td>3</td>
</tr>
<tr>
<td>NH_{3}-N $<\leq$</td>
<td>0.15</td>
</tr>
<tr>
<td>TN $<\leq$</td>
<td>0.2</td>
</tr>
<tr>
<td>TP $<\leq$</td>
<td>0.01</td>
</tr>
<tr>
<td>COD_{mn} $<\leq$</td>
<td>2</td>
</tr>
</tbody>
</table>

从图1可以看出，6项水质指标除TN低于III类水标准，其余指标均高于III类水标准。DO的质量浓度在3.8~12.8 mg/L之间，除7月低于III类水标准外，其余月份均满足III类水标准。3个断面在1~9月的DO质量浓度差异性不大，10~12月大横岭的DO质量浓度远低于桐树岭和南山断面。BOD_{5}的质量浓度在0.9~1.7 mg/L之间，满足I类水标准，3个断面的BOD_{5}质量浓度差异较小。NH_{3}-N的质量浓度在0.03~0.72 mg/L之间，总体介于I类水和II类水之间，不同断面的NH_{3}-N质量浓度差异较大。TN的质量浓度在2~4.88 mg/L之间，属于劣V类水，表明TN污染十分严重。除3月断面断面的TN质量浓度偏高外，3个断面在其余月份中TN的质量浓度差异较小。TP的质量浓度为0.02~0.05 mg/L之间，基本介于II与III类水之间，不同断面的TP质量浓度差异性较小。COD_{mn}的质量浓度在1.8~2.7 mg/L之间，满足II类水标准，不同断面的COD_{mn}质量浓度差异较小。总体来看，除NH_{3}-N质量浓度外，小浪底水库3个断面水质指标质量浓度变化差异性较小，空间变化特征不明显。

分析水库水质因子月均浓度变化发现，DO月均质量浓度波动较大，3月最高（12.6 mg/L），7月最低（4.1 mg/L），3~7月呈下降趋势，7~12月呈上升趋势，其变化可能与自然环境水温影响有关。BOD_{5}月均质量浓度较稳定，4月最高（1.63 mg/L），8月最低（1 mg/L）。NH_{3}-N月均质量浓度有一定波动，7月最高（0.33 mg/L），10月最低（0.1 mg/L）。
7—9 月浓度变化不明显。TN 月均质量浓度变化不大，5 月最高（4.1 mg/L），11 月最低（2.2 mg/L），变化趋势可能与降雨量和农业活动有关。TP 月均质量浓度较稳定，2 月最高（0.05 mg/L），11 月最低（0.02 mg/L），其中 8—11 月质量浓度呈下降趋势可能与浮游植物生长吸收有关。COD\textsubscript{no} 月均质量浓度变化不明显，3 月最高（2.7 mg/L），6 月最低（1.9 mg/L）。总体来看，6 项水质指标的平均质量浓度在 6—8 月处于较高水平，10—12 月较低，其余月份处于中等水平。

2.2 水质评价参数的权重计算结果

根据上述公式 (3) 计算各评价参数的权重结果见表 3—5。

从各监测断面评价因子的权重计算结果 (表 3—5) 可以看出，TN 的权重结果最高，其次为 DO 和 TP。DO 代表水体自净能力，其值越高说明水体水质越好；TN 和 TP 是表征水体富营养化的指标，其值越高说明水体水质越差，说明小浪底水库的主要污染因子为 TN 和 TP，属于富营养化污染。

当水体中 TN 和 TP 质量浓度分别高于 0.20 mg/L 和 0.02 mg/L 时，存在发生富营养化风险。从表 3—5 可以看出，不同时间不同采样断面的 TN 和 TP 质量浓度均远超限值，说明在一定的条件下水体有爆发富营养化的风险。当 N/P < 7 时，TN 是水体富营养化的限制因子；当 N/P > 30 时，TP 是水体富营养化的限制因子。本研究 TN/TP 介于 46～
122之间，远高于30，因此，TP是水库水体富营养化的限制因子。另外，水体中浮游生物群落的分布易受到水体理化条件的影响，其中蓝藻、硅藻、绿藻浮游生物群落对水体理化感敏，TN/TP变化直接影响着水体浮游生物群落的结构组成。有研究表明，当TN/TP<25时，适合藻类生长；当TN/TP>25时，绿藻和硅藻生长较快，这一现象与小浪底水库主要藻类是绿藻和硅藻相符。

2.3 模糊综合评判法计算结果

根据上述公式（1）-（4），将各水质监测数值代入相应公式计算，得各断面水环境质量综合评价结果，见表6-8。

小浪底水库属于集中饮用水水源地二级保护区，因此以《地表水环境质量标准》（GB3838-2002）Ⅲ类要求作为标准。根据表6-8可知，不同时间不同采样断面的水质级别达到Ⅲ类水质要求的比例为82.9%，基本满足Ⅲ类水质要求。而2011-2015年，小浪底水库为劣Ⅴ类水，处于污染状态[11]，近年来，水体质量明显提升，与当地政府对水库水体的保护与治理有关。整体来看，水库不同断面水质级别变化不大，空间变化特征不明显。

| 表3 大浪底断面各水质指标权重 |
月份	DO	BOD₅	NH₃-N	TN	TP	CODₘₙ
1	0.37	0.03	0.01	0.47	0.07	0.04
2	0.33	0.03	0.03	0.46	0.09	0.04
3	0.39	0.03	0.01	0.45	0.07	0.05
4	0.32	0.04	0.02	0.48	0.08	0.05
5	0.26	0.03	0.03	0.56	0.07	0.04
6	0.28	0.03	0.01	0.49	0.09	0.04
7	0.20	0.05	0.05	0.48	0.14	0.07
8	0.23	0.04	0.03	0.50	0.12	0.05
9	0.28	0.03	0.05	0.47	0.10	0.05
10	0.37	0.03	0.02	0.45	0.07	0.05
11	0.41	0.03	0.02	0.42	0.05	0.06
12	0.38	0.03	0.01	0.43	0.09	0.05

| 表4 松树断面各水质指标权重 |
月份	DO	BOD₅	NH₃-N	TN	TP	CODₘₙ
1	0.36	0.03	0.00	0.48	0.07	0.04
2	0.34	0.03	0.03	0.48	0.09	0.04
3	0.36	0.03	0.01	0.47	0.07	0.05
4	0.36	0.05	0.02	0.46	0.07	0.04
5	0.31	0.03	0.03	0.50	0.08	0.04
6	0.33	0.03	0.06	0.49	0.07	0.03
7	0.38	0.04	0.08	0.36	0.10	0.05
8	0.38	0.03	0.07	0.38	0.10	0.04
9	0.39	0.04	0.05	0.40	0.08	0.05
10	0.40	0.04	0.01	0.42	0.08	0.04
11	0.43	0.04	0.01	0.42	0.04	0.05
12	0.39	0.04	0.06	0.38	0.08	0.05

| 表5 南山断面各水质指标权重 |
月份	DO	BOD₅	NH₃-N	TN	TP	CODₘₙ
1	0.37	0.04	0.01	0.47	0.07	0.04
2	0.34	0.03	0.04	0.47	0.09	0.04
3	0.29	0.03	0.08	0.51	0.05	0.04
4	0.28	0.04	0.04	0.53	0.07	0.04
5	0.25	0.03	0.03	0.55	0.09	0.04
6	0.29	0.04	0.06	0.47	0.10	0.04
7	0.13	0.04	0.04	0.62	0.10	0.05
8	0.30	0.05	0.07	0.46	0.08	0.05
9	0.36	0.04	0.02	0.44	0.09	0.05
10	0.42	0.05	0.04	0.39	0.05	0.06
11	0.40	0.04	0.02	0.46	0.08	0.04

采用同一时间不同断面的隶属度均值做水质级别评价分析，发现水库水质在5月份为Ⅴ类水，7月份为Ⅳ类水，11和12月份达到Ⅰ类水标准，其余月份为Ⅲ类水。5月水库水质较差可能是因为受黄河上游农业耕作影响。有研究表明，农业活动和人类活动对黄河水质有影响[25]，农药化肥的过度施用导致黄河中上游渭河流域4月水质TN超标严重[26]，黄河水质从上游至下游逐渐变差[27]，农业活动高峰期会使小浪底水库水体污染加重[17]。4月和5月农业活动高峰期使小浪底水库水体TN质量浓度增高，水质变差。由于受水体自净作用影响，TN质量浓度自水库上游向下游逐渐减少，南山断面水质为Ⅴ类。
水，而水库下游的桐树岭断面水质为Ⅲ类水。7月水
库水质为Ⅳ类水劣于Ⅲ类水的原因与水库调水调沙
活动有关，调水调沙期间，水库水量大量减少，严重
影响水体质量[28]，其中DO的质量浓度远低于其他月
份，南山断面为Ⅴ类水，大横岭和桐树岭断面为Ⅳ类水。
而调水调沙活动结束后，3个断面的水质逐渐达到
水质要求，其中11月水质达到Ⅰ类水标准。

表 7 桐树岭断面各月水质评价结果

<table>
<thead>
<tr>
<th>月份</th>
<th>隶属度 $D_n(A,B)$</th>
<th>水质 类别</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.496 0.511 0.457 0.499 0.504</td>
<td>Ⅲ</td>
</tr>
<tr>
<td>2</td>
<td>0.497 0.506 0.448 0.490 0.503</td>
<td>Ⅲ</td>
</tr>
<tr>
<td>3</td>
<td>0.482 0.497 0.451 0.503 0.518</td>
<td>Ⅲ</td>
</tr>
<tr>
<td>4</td>
<td>0.469 0.488 0.450 0.507 0.531</td>
<td>Ⅲ</td>
</tr>
<tr>
<td>5</td>
<td>0.518 0.517 0.451 0.479 0.482</td>
<td>Ⅲ</td>
</tr>
<tr>
<td>6</td>
<td>0.507 0.512 0.456 0.491 0.493</td>
<td>Ⅲ</td>
</tr>
<tr>
<td>7</td>
<td>0.621 0.457 0.299 0.298 0.379</td>
<td>Ⅳ</td>
</tr>
<tr>
<td>8</td>
<td>0.560 0.390 0.280 0.378 0.440</td>
<td>Ⅴ</td>
</tr>
<tr>
<td>9</td>
<td>0.456 0.498 0.386 0.477 0.530</td>
<td>Ⅳ</td>
</tr>
<tr>
<td>10</td>
<td>0.433 0.471 0.445 0.526 0.567</td>
<td>Ⅲ</td>
</tr>
<tr>
<td>11</td>
<td>0.442 0.473 0.462 0.548 0.578</td>
<td>Ⅲ</td>
</tr>
<tr>
<td>12</td>
<td>0.405 0.443 0.435 0.534 0.595</td>
<td>Ⅲ</td>
</tr>
</tbody>
</table>

表 8 南山断面各月水质评价结果

<table>
<thead>
<tr>
<th>月份</th>
<th>隶属度 $D_n(A,B)$</th>
<th>水质 类别</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.483 0.502 0.454 0.504 0.517</td>
<td>Ⅲ</td>
</tr>
<tr>
<td>2</td>
<td>0.487 0.497 0.443 0.492 0.513</td>
<td>Ⅲ</td>
</tr>
<tr>
<td>3</td>
<td>0.547 0.535 0.445 0.464 0.453</td>
<td>Ⅲ</td>
</tr>
<tr>
<td>4</td>
<td>0.547 0.531 0.461 0.467 0.453</td>
<td>Ⅲ</td>
</tr>
<tr>
<td>5</td>
<td>0.574 0.545 0.453 0.445 0.426</td>
<td>Ⅴ</td>
</tr>
<tr>
<td>6</td>
<td>0.496 0.494 0.433 0.476 0.504</td>
<td>Ⅲ</td>
</tr>
<tr>
<td>7</td>
<td>0.739 0.594 0.418 0.301 0.261</td>
<td>Ⅴ</td>
</tr>
<tr>
<td>8</td>
<td>0.505 0.448 0.417 0.466 0.495</td>
<td>Ⅲ</td>
</tr>
<tr>
<td>9</td>
<td>0.457 0.479 0.443 0.507 0.543</td>
<td>Ⅲ</td>
</tr>
<tr>
<td>10</td>
<td>0.396 0.448 0.455 0.554 0.604</td>
<td>Ⅲ</td>
</tr>
<tr>
<td>11</td>
<td>0.473 0.502 0.470 0.541 0.572</td>
<td>Ⅲ</td>
</tr>
</tbody>
</table>

3 结论

（1）黄河小浪底水库TN，TP，COD，BOD，NH₃-N，
COD₅Me和DO这6项指标中，除TN低于Ⅲ类水标准外，
其余指标均高于Ⅲ类水标准。整体上，南山、大横
岭和桐树岭断面水质指标质量浓度空间变化差异
不明显。

（2）主成分分析与模糊综合评价表明，水库水体
的主要污染因子为TN和TP，属于富营养化污染。

TN/TP范围为46～122，TP是水库富营养化限制因
子，应引起重视。可通过控制水库中TN和TP含
量，降低水库发生富营养化的风险。

（3）水库水质状况基本满足Ⅲ类水水质要求。水
库水质级别空间变化特征不明显。受黄河上游农业
活动影响，5月水库水质较差，7月水质劣于Ⅲ类水与
水库调水调沙活动有关。

参考文献

[1] 张永锋，杨小林，张东。小浪底水库影响下的黄河花园口
站和小浪底站pCO₂特征及扩散通量[J]。环境科学，
2015,36(1):40-48。

[2] 陈翠霞，安成武，张秋，等。黄河水质污染现状与效果
[J]。环境科学，2017,44(2):69-74。

[3] 王春明，我国多沙河流水质“蓄清排浑”运用方式的发展
与实践[J]。水利学报，2016,47(3):283-291。

[4] 申冠卿，李勇，张原锋，等。小浪底水库拦沙对黄河下游
河道的减淤作用[J]。人民黄河，2020,42(6):1-6。

[5] 余阳，夏志强，李洁，等。小浪底水库对下游河道段河
床形态与过流能力的影响[J]。泥沙研究，2020,45(1):
7-15。

[6] 张诗媛，夏志强，李洁，等。近期黄河下游河道段床面
下切与横向展宽的定量关系[J]。泥沙研究，2020,45(2):
8-15。

[7] 齐磊，孙延明，李宏海，小浪底水库建成后黄河下游防洪
形势变化研究[J]。科学，2019,71(3):38-42。

[8] 李国华，李江辉，张小明，等。基于主成分分析及水质标
识指数法的黄河托克托段水质评价[J]。水土保持通报，
2018,38(6):310-314。

[9] 张琦，李松松，夏文林，基于模糊综合评判模型的东北三
省水资源承载力研究[J]。水土保持通报，2019,39(5):
179-188。

[10] 刘翠翠，小浪底水库水质和微生物多样性研究[D]。郑
州：河南农业大学，2014。

[12] 彭福利，张永峰，李爱，等。库尾水库入库断面水质多指
标评价与演变特征分析[J]。中国环境监测，2020,36
(1):65-74。

spatial distribution of water quality parameters of Aurangabad
District, India.[J]. Groundwater for Sustainable
Development, 2020,10,100345。

[14] 张立波，模糊综合评价法在地表水环境质量评价中的
应用，以西安市曲江池水环境为例[J]。西安石油大学
学报（社会科学版），2016,25(4):1-6。

[15] 田野，李畅，赵胜男，等。基于模糊数学的小浪底河
段水环境质量评价[J]。水土保持通报，2016,36(5):
162-166。

（上接第 111 页）

