Spatial Changes and Corridor Effects of Landscape Pattern After Earthquake
—A Case Study on Taoguan Area of Wenchuan County
LIU Han-hu, YANG Wu-nian
(State Key Laboratory of Geohazard Prevention and Geoenvironmental Protection/Institute of Remote Sensing & GIS, Chengdu University of Technology, Chengdu 610059, China)

Abstract: The spatial changes of landscape pattern and its corridor effect have been a basic and hot issues of landscape ecology. This paper discussed the methods how to research landscape pattern space change and their effect by RS and GIS in Taoguan area of Wenchuan County before and after earthquake disaster, and also extracted the information about the distribution of landscape, then contrasted the landscape pattern of the past and the present situation, this provided a strong theoretical basis for rational planning of economic development and living address of mountain people.

Keywords: remote sensing; landscape pattern; corridor effect; Wenchuan County; earthquake stricken area

1 研究区和研究数据
1.1 研究区简介
汶川县位于四川省阿坝藏族羌族自治州境内，因汶川得名，是中国4个羌族聚居县之一。地理坐标为北纬30°45′—31°43′，东经102°51′—103°44′。汶川地
区山体宏高所大，相对高差悬殊，光照、降水条件随海拔增高而变化，植被资源十分丰富，种类繁多，其中用林和灌木林已占森林植被面积的82.85%。稀疏林地、未成造林地、迹地更新地共占17.15%。

研究区位于映绣镇北直线距离10 km的岷江两岸，2.5 km范围内，距汶川县城直线距离为15 km，面积约为40 km²。研究区植被覆盖茂密，有岷江主流、支流通过，城镇居民点、道路、矿产地耕地等人类活动区域类型齐全，以此为研究区，具有很好的代表性。

1.2 研究数据

目前，常用的遥感数据源主要包括TM图像、SPOT图像、QuickBird图像、IKONOS图像和航空图像等。考虑到本次研究是研究灾区景观格局空间变化的廊道效应，需提供河流、道路、居民点等精细信息，现考虑到数据源获取的问题。对震前图像，选择具有高空间分辨率的QuickBird（成像于2006年）卫星遥感图像。其多光谱波段空间分辨率（星下点）2.44 m，全色波段为0.61 m（星下点），经过遥感图像处理后可达到0.61 m的真彩色融合图像。对震后图像，选择了国家资源部航拍图像。拍摄时间为2008年5月14日，其空间分辨率为0.3 m（图1）。

2 研究方法

本研究涉及景观生态学、遥感学、空间分析学等多学科，学科交叉性强，对专业理论知识要求高，对实际操作能力要求强，因此，研究采用的技术路线如图2所示。

2.1 高精度遥感图像数字处理

2.1.1 图像预处理 无论是QuickBird图像还是航空图像，其原始图像色调对比度不大，灰度级较集中，遥感层次较少，色彩不丰富，明度和饱和度低，影像分辨力和解析力均较差，不适宜直接用于遥感信息提取。因此这里主要对原始图像进行辐射增强，灰度级线性拉伸等增强处理。

2.1.2 数据融合 获取的QuickBird遥感影像，其多波段空间分辨率为2.44 m，全色波段为0.61 m，为充分利用较低空间分辨率波段（2.44 m）的多光谱信息和较少波段信息的高空间分辨率波段（0.61 m），这里对其进行了数据融合。融合后的图像具有高空间分辨率和高光谱分辨率的特点，常见的影像融合方法有：以像元为基础的高光谱融合、MRS色彩空间变换融合、基于小波理论特征融合、基于贝叶斯法则的分类融合以及以局部直方图匹配滤波技术为基础的影像数据融合等。本文根据研究区的实际情况，采用了基于主成分变换的方式，取得了较好的图像效果。

2.1.3 图像正射校正 QuickBird和航片都属于高精度图像，其由于地形起伏较大而导致变形较大。为了使遥感数据服务于研究人员，获取的QuickBird图像和航空图像必须经过正射校正。转换图的投影到我国标准投影北京54坐标系中，然后根据研究需要，确定其比例尺。只有这样，遥感数据方能很好地与其它的非遥感数据信息相复合和匹配，便于工作人员很好地对各种信息的相互比较分析。

对研究区QuickBird图像，利用Erdas中的QuickBird RPC模型对图像进行了正射校正，校正参考文件为1:5 万地形图。正射校正的精度一般控制在半个像元内。其地面控制点（GCP）的精度值通过DEM自动提取。校正好的正射影像图与等高线套合，效果较好，可满足1:2 500遥感解译使用。
对研究区的航空图像，由于其分辨率高，飞机飞行高度低，拍摄区范围大，导致图像变形程度很大。若采用传统光学遥感方法，虽然精度很高，但需要专门设备，校正复杂且成本高。因此，这里选择使用数字微分校正法对航空图像进行几何校正。选取航空图像拍摄区域的航空影像，给定该区域 3 个控制点的航空影像坐标和地形图坐标，用数字微分校正法进行校正。校正后的航空图与校正后的 QuickBird 图像吻合很好，能够满足后期信息提取的需要。

2.2 遥感信息提取

考虑我们根据 QuickBird 和航片需要提取的信息包括林地、耕地、水体、道路、居民点、崩滑体，未利用地这 7 个方面内容。这里采用分层信息提取的方法，对研究区图像，林地覆盖面积较大，且光谱特征明显而独特，根据计算机自动分类技术是可以提取出来的，而其它道路、居民点等信息影像特征在图上部分类似，难以用自动分类技术准确提取出来。同时，考虑到这些面积较大，且光谱解译工作量也不大，因此采用光谱解译方法。通过计算机处理，将研究区自动分类为林地和非林地，然后再使用解译成果提取的其它 6 类更新等信息结果，分类成果如附图 5 所示。

3 研究区景观格局变化分析

（1）在前面信息提取的基础上，对研究区景观分布数量进行统计（图 3）。统计结果表明，研究区林地所占比例大幅下降，下降的部分主要由崩滑体代替。而耕地、水体所占比例变化不大，说明耕地从空间位置上受崩滑体影响较少。河流则是由于上游水位较稳定使得其变化不大。公路和建筑用地及未利用地则由于崩滑体的影响而普遍减少。

（2）景观生态功能分区分布图。震前小流域中林地基质部分主要起到涵养水源，保持水土的功能，为小流域河流提供系列。中小流域中河流两侧是人类从事农业和工业经济。整体来看，小区小流域景观功能分区呈现出现沿谷河河床带状镶嵌的景观格局。

（3）景观异质性变化。从景观生态学的角度来看，对研究区仅 40 km² 的范围内，小流域景观要素主要有有 4 个。① 景观基质。震前林地相对面积占了绝对优势性，其连通性很强，控制了整个景观的动态变化，毫无疑问的是整个区域的基质要素。而震后林地相对面积没有很大优势，其连通性也由于崩滑体的影响而下降，从景观角度上看并非该区域基质，但从宏观角度来看（整个汶川县甚至更大范围）上看，林地依然是该区域的基质，但其对整个区域的生态控制能力下降。② 崩滑体。研究区震前崩滑体主要由崩滑体自然崩滑体、崩滑体和建筑用地等引起崩滑体组成，空间位置上位于河流两侧。其中，震后崩滑体斑块比较特殊，其相对面积较大，连通性也较好。从小流域角度上看，崩滑体在景观角度上看应为崩滑体。进一步的描述，研究区崩滑体比较明显，主要为河流崩滑体和公路崩滑体。崩滑体，其中，崩滑体一般是伴随河流崩滑体的，因此，对整个区域景观影响很大。

总的来说，研究区斑块、崩滑体和基质彼此镶嵌形成复合景观。但震后崩滑体相差很大，震前林地基质占了绝对优势性，导致崩滑体、基质和崩滑体彼此间连通度和连通性较差，景观异质性也较差。震后崩滑体的影响，使得崩滑体、基质和崩滑体彼此间连通度和连通性较差，而且在复合性上明显不足，崩滑体破碎化，导致景观异质性增高。

（4）生态环境的脆弱性。山区小流域由于受到降雨、滑坡等自然灾害和地震滑坡等突发事件的影响，景观生态系统抗干扰性低。干扰一旦发生，整个系统很难恢复，甚至可能由于系统“正常”运行受威胁的而承受重大的破坏。长期来看，山区小流域一方面由于受降雨降低，时刻分布不均匀的影响，另一方面，由于人们的对山区经济的开发，修建高速公路，修建工厂，开发矿山，砍伐森林，陡坡耕种等各种各样的活动影响不断扩大，使得整个景观生态系统非常脆弱。因此，人类活动是山区小流域景观生态系统不稳定的诱因之一，而毁灭性的突发地震以及带来的滑坡、崩塌等地质灾害是本研究区景观变化的主要原因，这使得原本脆弱的生态环境更加脆弱和危险。

4 河流廊道的景观系统影响分析

研究区景观格局最主要的特点是河流廊道与道路廊道相辅相成，这种道路廊道与河流廊道平行，伴生格局是山区小流域景观体系最突出的特点。其主要原因是山区小流域地形高差大，地貌、气候等自然条件的制约。这种廊道格局特点是河流廊道的宽度，对流域景观生态系统的稳定性有着重要影响。从景观分布变化来看（图 3），河流两侧景观受地震影响
最大，而且岷江主流两侧崩滑体范围明显大于支流影响范围，这表明河流廊道的特殊空间效应。总的来说，由于高山峡谷区特殊的自然条件，岷江河流宽度和比降大，水流湍急，直接影响人类活动范围和程度，使得岷江河流关键段的河流廊道对流域的区域生态系统影响作用较大。传统意义上的上游经济功能是高山峡谷区河流所不具备的，河流主要是作为自然资源而被利用，其作用主要表现为生态功能的有利和不利两个方面的影响。

4.1 河流廊道的积极效应
以岷江为主体的河流廊道在流域起到如下的作用：（1）为系统提供所需水分。流域内各种生物生存所需的有效水资源主要依靠河流提供，由于该区降水量季节分配不均，河流廊道起着调节水分的作用。（2）输送能量。岷江流域的水能资源丰富，河流坡降低，易于开发利用。（3）岷江流域水资源的水受到人类活动的影响很少，尤其是川境境域森林覆盖率大，河水径流水质好，有机物质极少，水资源适宜于人畜饮用和农作物灌溉。（4）该流域河流廊道源头多为冰川和积雪，利于径流调节，流域内河流廊道体系为该区提供了丰富的水资源，为区域内农林牧业生产与发展提供了水源保障。

4.2 河流廊道的消极影响
河流廊道对流域生态系统有着不利影响。由于高山峡谷区河流的下蚀能力远远大于侧蚀能力，使的河流两侧地势陡峭；平坦地区较少；这种地形条件约束了人类的居住选址和经济活动，使人类处于潜在地质灾害（滑坡、崩塌、泥石流等）的威胁之中；（2）河流两侧的山脚处往往受地应力集中位置，而这里也是人类活动最强烈的地方，较小的改正也会导致地应力的较大变化，使得岩石失稳，产生地质灾害，破坏了景观格局分布。（3）洪水灾害也是景观生态系统不稳定的主要影响因子。研究区内的城镇、村庄，农田、煤矿等主要分布在岷江及其支流的阶地与滩地，由于岷江河流主流河道受地形限制，其洪水流速能力弱，一旦下游滑坡、泥石流等地质灾害顺河而下，上游河流两岸景观格局将会被破坏，同时在洪水河段两侧会引发一系列的地质灾害，使得洪水影响不仅仅局限在施涝区。

5 结论
岷江江川区的河。作为行票州动中不可缺少的要素之一，大大影响了景观格局的分布。（1）借助高精度卫星遥感影像和航空图像，基于RS和GIS技术，可以准确快速地提取各类景观信息。（2）从地震前后景观格局的位置和数量变化来看，耕地面积变化最小，说明耕地受地震灾害的影响最小，可以作为预防灾害过渡区安置区，但要注意洪水的威胁。

（3）从景观图象来看，岷江主流两侧建筑基本被毁，而其支流建筑用地损失较少，这主要是由于主流两侧山地坡度较大，谷底地形宽阔度相对两侧山坡优势尽失，而支流两侧河谷宽阔，山坡坡度较缓。因此，从住宅选址的角度来看，主流两侧不一定是最佳选址位置，在灾区城镇异地重建过程中应从地形地貌、地质上进行综合分析，多注意支流两侧。

（4）河流廊道作为高山峡谷区景观的纽带之一，其独特的空间布局大大影响了整个景观生态系统的稳定性，人类活动应充分利用河流廊道的优越性而避免其消极影响。

[参考文献]
[1] 王建伟，程明德，干旱荒漠绿洲景观空间格局及其受水资源条件的影响分析[J]。生态学报，2002，20（3）：363-368。
[8] 王霞，王治全，城市河网的景观敏感性与景观规划[J]。浙江大学学报：自然科学版，2005，32（5）：594-600。
[9] 张泰、张振，徐晓清，城市河流景观整治中的自然化形态设计[J]。浙江林业科学，2006，23（2）：202-206。
[10] 吴健，徐晓清，徐志浩，景观空间结构分析在城市水系规划中的应用[J]。中国科学，2007，37（1）：108-113。
[12] 蒋建平，王林超，朱志明。基于城市河网自然化的人工生态防洪对策，河岸环境与柔性堤岸设计导引[J]。城市规划，2007，33（3）：51-58。