引用本文:
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 30次   下载 28 本文二维码信息
码上扫一扫!
分享到: 微信 更多
半干旱黄土丘陵区不同植被类型的土壤水分特征及其稳定性
殷地迟1, 王立1, 蔡国军2, 莫保儒2, 柴春山2, 马驰2
1.甘肃农业大学 林学院, 甘肃 兰州 730070;2.甘肃省林业科学研究院, 甘肃 兰州 730020
摘要:
[目的] 研究5种不同植被类型土壤水分动态特征,为区域内优化配植模式提供理论依据。[方法] 以甘肃省定西市半干旱黄土丘陵区5种典型的植被类型为研究对象,使用土壤水分速测仪对2017,2018年0-200 cm土层土壤含水量进行观测,并对不同植被类型土壤水分特征及其稳定性进行分析。[结果] ①不同植被类型土壤水分呈现出:山杏×侧柏混交林地(11.24%) > 退耕苜蓿草地(10.97%) > 自然荒地(10.66%) > 退耕林地(9.99%) > 柠条林地(9.55%)。②5种植被类型在0-200 cm土层依据有序聚类法可分为动态变化层(0-40 cm),利用层(40-100 cm)和弱利用层(100-200 cm)3个层次。在动态变化层(0-40 cm),土壤水分呈现出:自然荒地(14.23%)最高,柠条林地(11.04%)最低;在利用层(40-100 cm):退耕苜蓿草地(12.16%)最高,柠条林地(9.15%)最低;在弱利用层(100-200 cm):自然荒地(10.81%)最高,退耕林地(8.61%)最低。③不同植被类型土壤水分土层稳定性(变异系数)呈现出:退耕林地(19.9%) < 山杏×侧柏混交林地(21.3%) < 自然荒地(21.9%) < 退耕苜蓿草地(22.6%) < 柠条林地(23.6%)。④不同植被类型土壤水分时间稳定性(变异系数)呈现出:自然荒地(25%) < 退耕林地(25.2%) < 山杏×侧柏混交林地(26.5%) < 柠条林地(27.1%) < 退耕苜蓿草地(31.9%)。[结论] 柠条林地土壤水分含量最低,在土层和时间上不稳定,山杏×侧柏混交林地较其他植被类型土壤水分含量更高,更具有稳定性。
关键词:  黄土丘陵区  土壤水分  植被类型  稳定性
DOI:10.13961/j.cnki.stbctb.2020.01.010
分类号:S157.2;S152.7
基金项目:国家重点研发计划项目"宽梁缓坡丘陵区人工灌草稳定性维持与功能提升技术和示范"(2017YFC0504603)
Soil Moisture Characteristics and Stability of Different Vegetation Types in Semi-arid Loess Hilly Region
Yin Dichi1, Wang Li1, Cai Guojun2, Mo Baoru2, Chai Chunshan2, Ma Chi2
1.College of Forestry, Gansu Agriculture University, Lanzhou, Gansu 730070, China;2.Gansu Forestry Academy, Lanzhou, Gansu 730020, China
Abstract:
[Objective] The dynamic characteristics of soil moisture of five different vegetation types were studied to provide a theoretical basis for optimizing plantation mode.[Methods] Five typical vegetation types from the semi-arid loess hilly region of Dingxi City, Gansu Province, were selected. The soil moisture content of the soil layer from 0 to 200 cm in depth was observed in 2017 and 2018 using a soil moisture tachometer. The characteristics and stability of soil moisture of different vegetation types were analyzed.[Results] ① The soil moisture content of different vegetation types was:mixed forest of Armeniaca sibirica and Platycladus orientalis (11.24%) > Medicago sativa grassland (10.97%) > natural grassland (10.66%) > returning farmland (9.99%) > Caragana korshinskii forest (9.55%). ② According to the orderly clustering method, the 0-200 cm soil layer of the five vegetation types could be divided into three sublayers:dynamic change layer (0-40 cm), utilization layer (40-100 cm), and weak utilization layer (100-200 cm). In the dynamic change layer (0-40 cm), the soil moisture content was the highest in the natural grassland (14.23%) and lowest in the C. korshinskii forest (11.04%); In the utilization layer (40-100 cm), the soil water content was the highest in the M. sativa grassland (12.16%) and lowest in the C. korshinskii forest (9.15%); In the weak utilization layer (100-200 cm), the soil water content was the highest in the natural grassland (10.81%) and lowest in the returning farmland (8.61%). ③ The layer stability of soil moisture (coefficient of variation) in the different vegetation types was:returning farmland (19.9%) < mixed forest of A. sibirica and P. orientalis (21.3%) < natural grassland (21.9%) < M. sativa grassland (22.6%) < C. korshinskii forest (23.6%). ④ The temporal stability of soil moisture (coefficient of variation) in the different vegetation types was:natural grassland (25%) < returning farmland (25.2%) < mixed forest of A. sibirica and P. orientalis (26.5%) < C. korshinskii forest (27.1%) < M. sativa grassland (31.9%).[Conclusion] In the semi-arid loess hilly region, the soil moisture content was the lowest in the C. korshinskii forest. This vegetation type also had the most unstable layer and temporal stability. The soil moisture content in mixed forest of A. sibirica and P. orientalis was higher and more stable than other vegetation types.
Key words:  loess hilly area  soil moisture  vegetation types  stability