引用本文:
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 32次   下载 20 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于Kendall重现期的华南中小流域洪水峰量联合分布研究
赵玲玲1,2,3,4,5, 杨兴6, 刘丽红6, 刘昌明4,5
1.广东省遥感与地理信息系统应用重点实验室, 广东 广州 510070;2.广州地理研究所 广东省地理空间信息技术与应用公共实验室, 广东 广州 510070;3.广州地理研究所, 广东 广州 510070;4.中国科学院 地理科学与资源研究所, 北京 100101;5.北京师范大学 水科学学院, 北京 100875;6.安徽理工大学 地球与环境学院, 安徽 淮南 232000
摘要:
[目的] 对山区中小流域洪水峰量联合分布进行研究,以期为山区洪水防治提供理论参考。[方法] 基于Archimedean Copula函数与Kendall测度分析3个山区中小流域的洪峰洪量联合分布的3种重现水平。由择优构建的Gumbel Copula及Kendall测度计算了洪水峰量联合分布的"或"、"且"和Kendall重现期及其设计洪水分位数。[结果] ①洪峰和洪量之间具有高相关性,Kendall轶相关系数达0.76以上;②3个流域洪水峰量同频遭遇风险概率很大,均超过81%;③在工程经济安全两方面,对比设定的重现期显示,介于"或"重现期和"且"重现期之间的Kendall重现期更准确地反映洪水峰量联合分布的风险率;④按两变量"或"重现期洪水峰量和同频率推算的洪水设计值偏高。[结论] 以Kendall重现期推算的洪水峰量设计值,可为山区中小流域防洪工程安全提供新的选择。
关键词:  Gumbel Copula函数  Kendall测度  洪水峰量联合分布  Kendall重现期  洪水要素设计分位值  防洪工程
DOI:10.13961/j.cnki.stbctb.2020.01.024
分类号:TV122
基金项目:国家自然科学基金项目"变化环境下华南中小流域设计暴雨洪水同频率假定检验与作用机制"(项目批准号:41771044);广东省水利科技创新重点项目(2016-14);广东省科学院发展专项资金项目(2019GDASYL-0104003,2020GDASCX-00401);广东省科技计划项目(2018B030324002)。
Joint Distribution of Flood Peaks in Medium and Small Watersheds of South China Based on Kendall's Return Period
Zhao Lingling1,2,3,4,5, Yang Xing6, Liu Lihong6, Liu Changming4,5
1.Key Laboratory of Guangdong for Utilization of Remote Sensing and Geographical Information System, Guangzhou, Guangdong 510070, China;2.Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangzhou, Guangdong 510070, China;3.Guangzhou Institute of Geography, Guangzhou, Guangdong 510070, China;4.Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China;5.College of Water Sciences, Beijing Normal University, Beijing 100875, China;6.Department of Earth and Environment, Anhui University of Science & Technology, Huainan, Anhui 232000, China
Abstract:
[Objective] The joint distribution of flood peaks in small and medium watersheds in mountainous areas of South China was examined to provide a theoretical reference for flood control in mountainous areas.[Methods] Based on the Archimedean Copula function and the Kendall measure, three kinds of recurrence levels of the combined distribution of flood peaks in selected watersheds of three mountainous areas were analyzed. The "OR", "AND" and Kendall return periods and their design flood quantiles for the joint distribution of flood peaks were calculated based on the Gumbel Copula funtion and Kendall measures.[Results] ① There was a high correlation between flood peak and flood volume (Kendall correlation coefficient >0.76); ② The probability of flood peaks in three basins was very high, all exceeding 81%; ③ In terms of engineering economic security, the comparison of the set-up period showed that the Kendall return period between the "OR" and the "AND" return periods more accurately reflects the risk ratio of the joint distribution of flood peaks; ④ The flood design value calculated by the two-variable "OR" return period and the same frequency were higher.[Conclusion] The design value of peak flood volume calculated from Kendall recurrence period can provide new safety insights for flood control projects in small and medium-sized mountain basins.
Key words:  Gumbel Copula function  Kendall measure  flood peak joint distribution  Kendall return period  design flood quantile  flood control project