滦河典型林分枯落物层与土壤层的水文效应

张 宁¹,郭宾良¹,张 楠²,张绍杰¹,张建华²,谷建才¹

(1. 河北农业大学, 河北 保定 071000; 2. 河北木兰围场国有林场管理局, 河北 围场 068450)

摘 要: [目的] 研究滦河上游典型林分的枯落物层与土壤层的水文效应,为森林健康监测和评价提供依据。[方法] 对滦河上游 3 种林分的枯落物层未分解层与半分解层进行调查研究。[结果] (1) 油松林的枯落物生物量为 $12.03~t/hm^2$,最大持水量为 $19.4~t/hm^2$,有效拦蓄量为 $23.52~t/hm^2$;落叶松林的枯落物生物量为 $9.51~t/hm^2$,最大持水量为 $11.9~t/hm^2$,有效拦蓄量为 $17.03~t/hm^2$;落叶松白桦混交林的枯落物生物量为 $11.9~t/hm^2$,有效拦蓄量为 $11.00~t/hm^2$;落叶松白桦混交林的枯落物生物量为 $11.00~t/hm^2$,有效拦蓄量为 $11.00~t/hm^2$ 。(2) 半分解层枯落物浸泡 8 h已基本达到饱和,而未分解层需浸泡 10~h。枯落物在浸水的前 10.5~h 内吸水速率最大,10.5~h 存在时吸水速率明显减缓。(3) 落叶松白桦混交林土壤层持水能力最强,为 10.5~h 为 10.5

关键词: 枯落物层; 土壤层; 水文效应

文献标识码: A 文章编号: 1000-288X(2015)03-0044-05

中图分类号: S715.7

DOI:10.13961/j.cnki.stbctb.2015.03.005

Hydrological Effect of Litter Layer and Soil Layer Under Typical Stands in Luanhe River

ZHANG Ning¹, GUO Binliang¹, ZHANG Nan², ZHANG Shaojie¹, ZHANG Jianhua², GU Jiancai¹ (1. Agricultural University of Hebei, Baoding, Hebei 071001, China;

2. Mulanweichang Forestry Administration of Hebei Province, Weichang, Hebei 068450, China)

Abstract: [Objective] To study the hydrological effect of typical forest litter layer and soil layer on the upper Luanhe River, in order to provide theoretical basis for monitoring and evaluation of the forest. [Methods] The non-decomposed layer and semi-decomposed layer of three different types forest litter were investigated. [Results] (1) The litter accumulation amount, the maximum moisture capacity, and the effective retaining content of *Pinus tabulae formis* forest were 12.03, 19.4, and 23.52 t/hm² respectively, those of larch forest were 9.51, 11.9, and 17.03 t/hm² respectively, and those of mixed forest of larch and birch were 5.54, 13.0, and 13.7 t/hm², respectively. (2) It nearly reached saturation in 8 h for semi-decomposed layer, while it needed 10 h for non-decomposed layer. The water absorption rate of litter reached maximum within 0.5 h, and it slowed down obviously at about 6 h. (3) The water holding capacity of soil layer for *Larix gmelini* and *Betula platyphylla* mixed forest was highest, which was 375.92 t/hm², while it was lowest in soil layer of *Pinus tabulae formis* forest, which was 248.04 t/hm². Using the power function to fit the infiltration rate and infiltration time, the correlation coefficient R^2 was more than 0.98. [Conclusion] The biomass, maximum water holding capacity, and the effective holding capacity are maximum in the litter layer of *Pinus tabulae formis* forest, and the mixed forest of larch and birch have the highest soil water holding capacity.

Keywords: litter layer; soil layer; hydrological effects

森林的枯落物在整个森林生态系统中发挥着很重要的作用,不仅对截持降水,防止土壤溅蚀,阻延地表径流,抑制土壤水分蒸发,增强土壤抗冲性等方面

具有一定的作用,并且它作为森林水文效应的第二活动层,对森林涵养功能的调控具重要意义[1]。土壤层作为森林水文效应的第三活动层,通过土壤毛管空隙

和非毛孔空隙,降水可以被植物利用,贮存起来或者汇入溪流,从而将体现出土壤层透水和贮水的功能。河北木兰围场国有林场位于滦河上游,森林生态系统以针叶林为主体,国内对于该区的研究主要集中在物种多样性、地质、土壤等方面,对水文功能的研究则相对较少[2]。本文对北沟林场3种林分枯落物层与土壤层的水文效应做了详细研究,旨在为森林健康的监测和评价提供一定的理论依据[3-5]。

1 研究区概况

河北省围场县位于河北省最北部,地处滦河上游, $41^{\circ}47'-42^{\circ}06'$ N, $116^{\circ}51'-117^{\circ}45'$ E。东与内蒙古赤峰市接壤,南及西南与隆化、丰宁两县连接,北与内蒙古浑善达克沙地毗邻。位于阴山山脉与大兴安岭山脉余脉的交汇处,是连接坝上高原和冀北山地的丘陵山地地带。河北省围场县海拔高 $750\sim1~829~m$,该区属大陆性季风型气候区,年平均温度 $-1.5\sim4.8~\mathbb{C}$,全年西北部的无霜期为 $90\sim100~\mathrm{d}$,中部和东南部的无霜期为 $100\sim125~\mathrm{d}$,年均降水量 $380\sim560~\mathrm{mm}$,降水季节分配很不平衡。围场县主要包括棕壤、褐土、风砂土、草甸土、沼泽土、灰色森林土、黑土 $7~\mathrm{Ch}$ 之类,

共 15 个亚类,66 个土属,143 个土种。河北围场植物种类繁多,据调查统计有野生种子植物 90 科 371 属793 种,有大型真菌 24 科 60 种,有苔藓植物 34 科 83 属 201 种,其中河北新纪录种有 6 种;有蕨类植物 12 科 14 属 22 种。试验地位于河北省围场县木兰林管局北沟林场,调查样地设置在北沟林场的东沟营林区。

2 研究方法

2.1 枯落物生物量测定

选择落叶松纯林、油松纯林和落叶松白桦混交林3种林分设置标准地,各种类型分别选取3块,标准地大小为30m×30m,对标准地林分中的林木进行调查(表1)。在标准地内各采取5块大小为50cm×50cm的样方,分布在标准地4个角及中心部位,对于枯落物要测定其厚度,并把未分解层与半分解层分开放置到尼龙袋中,并迅速称其鲜重。最后将其放置在干燥通风处8d以上,在用手触摸枯落物没有潮湿感的时候,就可以称其重量,即是风干重,计算出枯落物生物量,为方便表达,以下枯落物的基本数据均为5块样方的平均值。

表 1 不同林分标准地概况

林分类型	样地规格	海拔/m	坡向	坡度/°	主要树种
落叶松林	30 m×30 m	1 280~1 620	WN	20~30	落叶松
油松林	$30 \text{ m} \times 30 \text{ m}$	1 080~1 220	W	$18 \sim 15$	油 松
混交林	$30~\mathrm{m} \times 30~\mathrm{m}$	1 230~1 340	WS	$20 \sim 30$	落叶松、白桦

注:表中混交林指落叶松和白桦混交林。下同。

2.2 枯落物持水量和吸水速率的测定

采用室內浸泡法测定枯落物持水量及其吸水速度,先将5个小样方内枯落物的总厚度、未分解层和半分解层的厚度测定出来,取各个样方的平均值作为样地内的枯落物的厚度,按照分解程度,收集枯落物分为未分解层与半分解层,迅速称其鲜重,然后将其带回实验室称其烘干以后的质量。最后将枯落物浸入水中后,分别测定其在0.5,1,2,4,6,8,10和24h的重量变化,研究其吸水速度和吸水过程[6-8],测定枯落物的持水量(每次取出称重后所得的枯落物湿重与其风干重差值)、吸水速率和饱和持水率。采用以下公式来计算各个含水指标:

$$C = (m_1 - m_2) / m_2 \times 100\% \tag{1}$$

$$S = (m_3 - m_2) / m_2 \times 100\% \tag{2}$$

$$W_m = (R_m - R_0)M \tag{3}$$

式中:C——枯落物自然含水量(%); m_1 ——样品鲜质量(g); m_2 ——样品烘干质量(g); S——饱和持水率(%); m_3 ——样品浸水 24 h 后的质量(g); W_m ——枯

落物的最大拦蓄量 (t/hm^2) ; R_m ——最大持水率(%); R_0 ——平均自然含水量(%); M——枯落物蓄积量 (t/hm^2) 。吸水速率为持水量与浸泡时间的比值。

2.3 枯落物有效拦蓄量的测定

枯落物对降雨的实际拦蓄量的测定,可以通过有效拦蓄量(modified interception)来进行计算[9-11],即:

$$W = (0.85R_m - R_a)M (4)$$

式中:W——有效拦蓄量(t/hm²)。下同。

2.4 土壤层物理性质的测定

土壤调查采用剖面法,在各标准地选取有代表性样点,分别按 0—10 cm,10—20 cm,20—40 cm 取样[12-14]。用烘干法测定土壤含水量,用环刀法测定土壤容重、孔隙度等物理性质,土壤持水力。

$$S' = 10\ 000\ h\,p\tag{5}$$

式中: S'——土持水力 (t/hm^2) ; h——土壤层厚度(m); p——非毛管孔隙度(%)。

2.5 土壤入渗测定与计算

采用内环直径为 7.5 cm,外环直径为 15 cm 的双

环测定 0—20 cm 的土壤水分入渗过程。其中,初渗率=最初入渗时段内渗透量/入渗时间(初渗速率为第1分钟的入渗速率,最初入渗时段内渗透量的时间为1 min);平均渗透速率=达到稳渗时的渗透总量/达到稳渗时的时间;稳渗率为单位时间内的渗透量趋于稳定时的渗透速率^[15-16]。本文选取 Kostiakov 数学模型对实测入渗过程进行拟合。公式如下:

$$f = at^{-b} \tag{6}$$

式中: f——t 时间时的瞬时入渗速率(mm/min); t——入渗时间(min); a,b——试验资料拟合的参数。

3 结果与分析

3.1 枯落物生物量

枯落物的现存生物量与林分类型有密切关系。

林分树种组成不同,生长状况不同,都与枯落物层的储量有直接关系,这些因素会不同程度地影响到枯落物的输入与分解。如表 2 所示,3 种类型林分类型下枯落物生物量有一定差别。其中,油松林枯落物生物量最大,其次是落叶松林为,落叶松和白桦混交林的枯落物生物量最小,这些差别主要是由于林分内针阔叶树种组成不同所致。此外,根据枯落物的分解程度把枯落物分为未分解层与半分解层,通过分析不同类型林分枯落物未分解层、半分解层储量可以看出,各层次储量所占比例不同,落叶松和白桦混交林下枯落物未分解层所占比例最小,占总储量的43.1%;而落叶松林下枯落物未分解层所占比例最大,占总储量的53.8%,这可能是由于阔叶树落叶分解较快,而针叶树落叶难以分解的缘故。

表 2 不同林分枯落物生物量

	枯落物平均	均厚度/cm	枯落物		枯落物	生物量		 枯落物
林分类型	未分解	半分解	总厚度/ cm	未分解/ (t•hm ⁻²)	未分解 比例/%	半分解/ (t•hm ⁻²)	半分解 比例/%	总生物量 / (t•hm ⁻²)
落叶松林	2.2	1.7	3.9	5.12	53.8	4.39	46.2	9.51
油松林	3.7	1.2	4.9	6.21	51.6	5.82	48.4	12.03
混交林	1.9	1.8	3.7	2.39	43.1	3.15	56.9	5.54

3.2 枯落物水文效应

3.2.1 枯落物最大持水量 3 种类型林分枯落物的最大持水量有所不同(表 3)。油松林的最大持水量最大,为 19.4 t/hm^2 ,落叶松林的最大持水量最小,仅为 11.9 t/hm^2 ;各类型林分枯落物最大持水率的变动范围为 $187\%\sim330\%$ 。同一类型林分的最大持水率与最大持水量呈现出不同的规律,这主要是因为枯落物自身结构不同有关。枯落物的分解程度也影响枯落物层的持水能力,枯落物分解程度越高,半分解层枯落物生物量越大,枯落物层的持水能力越高。

3.2.2 枯落物持水过程 枯落物持水量与浸泡时间 具有一定的相关关系。由表 4 可知,在最初浸泡的半 个小时内,枯落物持水量迅速增加,而后随着浸泡时 间的延长呈现不断增加的趋势,且增加速度逐步放 缓。这一趋势与枯落物拦蓄地表径流规律相似,即降 雨初期,枯落物拦蓄地表径流功能较强,此后随枯落物 湿润程度的增加,吸持能力降低[$^{??}$]。此外,半分解层枯落物持水量在浸泡 8 h 时已基本达到饱和,而未分解层持水量浸泡 10 h 时基本达到饱和。对 $0.25\sim24$ h 之间 3 种类型林分枯落物各层持水量与浸泡时间的关系进行回归分析,得出该时间段内持水量与浸泡时间之间存在如下关系(表 5):

 $Q = a \ln t + b$

式中:Q——枯落物持水量(g/kg);t——浸泡时间(h);a——方程系数,b——方程常数项。

表 3 3 种林分枯落物最大持水量和最大持水率

	最大持才	K 量/(t・	• hm ⁻²) 最大持水率/%			/%
林分类型	未分 解层	半分 解层	总和	未分 解层	半分 解层	平均
落叶松林	5.5	6.4	11.9	187	278	233
油松林	11.3	8.1	19.4	192	289	241
混交林	7.5	5.5	13.0	258	330	294

表 4 不同林下各枯落物层持水量

林分类型	 层 次			不同	司浸泡时间村	古落物层持四	K量/(g・kg	⁻¹)		
体力关型	伝 从	0.25 h	0.5 h	1 h	2 h	4 h	6 h	8 h	10 h	24 h
** n.l. +/\ ++	未分解	1 788.9	1 978.5	2 106.4	2 148.9	2 198.5	2 294.2	2 311.4	2318.1	2 414.9
落叶松林	半分解	2 238.3	2 554.4	2 641.3	2 745.5	2 777.9	2 828.3	2 865.7	2856.2	2 841.2
N. 10 11	未分解	1 888.6	2 028.5	2 013.4	2 120.8	2 174.3	2 300.1	2 399.0	2366.2	2 563.3
油松林	半分解	2 987.1	3 261.0	3 434.9	3 319.6	3 450.8	3 432.9	3 471.0	3516.6	3 708.5
, ,, ,,,	未分解	2 334.3	2 219.7	2 688.4	2 722.5	2 879.3	2 906.8	2 986.3	3059.4	3 180.3
混交林	半分解	3 189.8	3 257.1	3 334.7	3 346.3	3 330.4	3 342.7	3 372.8	3381.9	3 442.7

表 5	不同林分	∤枯莈物 」	三 持 水 量	与浸泡F	计间关系
18 3	71 1 1 1 1 1 1 1 1 1 1 1 1	しがし から 4クル	ᅲᅦᆔᄼᄩ	-1 12 1P. F	ᄞᄜᅐᅑ

枯落物层	关系式	R^2
落叶松林	$Q = 269.50 \ln t + 1790.0$	0.987
洛川你你	$Q = 275.69 \ln t + 2313.3$	0.942
N. 10 11	$Q = 279.87 \ln t + 1807.9$	0.860
油松林	$Q = 254.85 \ln t + 3035.5$	0.854
	$Q = 420.77 \ln t + 2176.7$	0.882
混交林 	$Q = 96.423 \ln t + 3196.0$	0.904

3.2.3 枯落物吸水速率 试验表明,3 种类型林分的枯落物的吸水速率表现出一定的规律性(表 6)。在浸水初期 0.5~1 h 内,枯落物吸水速率最大,之后吸水速率急剧下降,6 h 左右时下降速度明显减缓,随浸泡时间延长,枯落物吸水速率趋向一致。这主要是因为随着浸泡时间增长,枯落物持水量接近其最大持水量,也就是说枯落物持水量逐渐趋于饱和,其增长速度随之减缓所致。

表 6 不同浸泡时间 3 种林分枯落物层的平均吸水速率

林分类型	日次			不同浸	是泡时间的平	均吸水速率	 	• h ⁻¹)		
你刀关望 /2	层次	0.25 h	0.5 h	1 h	2 h	4 h	6 h	8 h	10 h	24 h
落叶松林	未分解	7 155.6	3 957.0	2 106.4	1 074.5	549.6	659.5	288.9	231.8	100.6
	半分解	8 953.2	5 108.8	2 641.3	1 372.8	694.5	851.5	358.2	285.6	118.4
>+++/\ ++	未分解	7 554.4	4 057.0	2 013.4	1 060.4	543.6	676.2	299.9	236.6	106.8
油松林	半分解	11 948.4	6 522.0	3 434.9	1 659.8	862.7	1087.0	433.9	351.7	154.5
泊 六 ++	未分解	9 337.2	4 439.4	2 688.4	1 361.3	719.8	739.9	373.3	305.9	132.5
混交林	半分解	12 759.2	6 514.2	3 334.7	1 673.2	832.6	1085.7	421.6	338.2	143.4

3.2.4 枯落物有效拦蓄量 林分类型下不同层次枯落物的拦蓄能力见表 7。在本研究中,之所以采用有效拦蓄量来评价枯落物对降水的拦蓄能力,主要是因为最大持水量并不能代表枯枝落叶层对降雨的实际截留量,它只能反映枯枝落叶层持水能力的大小,用最大持水率来估算枯枝落叶层对降雨的拦蓄能力,其结果会有所偏高,不能真实反映出枯枝落叶层对降雨的实际

拦蓄效果,故采用有效拦蓄量来反映枯枝落叶层对一次降水拦蓄能力,该指标主要与枯落物数量、水分状况、降雨特性有关。从有效拦蓄率看,各林分未分解层均小于半分解层。由于不同林分枯落物的蓄积量不同,所以有效拦蓄量和有效拦蓄量深的变化规律也不尽相同,未分解层中,油松林的有效拦蓄能力最强,为23.52 t/hm²,落叶松白桦混交林有效拦蓄能力最弱。

表 7 不同林分枯落物层有效拦蓄能力

林分类型	层次	枯落物累积量/ (t• hm ⁻²)	自然含水率/	最大持水率/	有效拦蓄率/	有效拦蓄量/ (t•hm ⁻²)
7 ≠ n L +/\ ++	未分解	5.12	7.5	187	151.45	7.75
落叶松林	半分解	4.39	24.8	278	211.50	9.28
油松林	未分解	6.21	9.9	192	153.30	9.52
/田 የሬ ተላ	半分解	5.82	5.1	289	240.55	14.00
混交林	未分解	2.39	6.9	258	212.40	5.08
	半分解	3.15	6.7	330	273.80	8.62

3.3 土壤层的水文效应

3.3.1 土壤层的物理性质 如表 8 所示,3 种林分类型土壤容重的总体变化不大。落叶松林的土壤容重最大,油松林的次之,落叶松白桦混交林的最小。总孔隙度的变化趋势为:落叶松白桦混交林>油松林>落叶松林。而非毛管孔隙度与土壤持水力密切相关,表现为:落叶松白桦混交林>油松林。土壤持水能力表现为:落叶松白桦混交林持水能力最强,落叶松林的次之,油松林土壤的持水能力最差。

3.3.2 土壤层的渗透性 土壤渗透性能越好,地表

径流越少,土壤的流失量也相应减少,因此,土壤的渗透能力是影响土壤侵蚀的重要因素之一,是土壤水文效应评价的重要指标。从表 9 中得知:3 种林分土壤的初渗速率相差较大,落叶松白桦混交林的初渗速率为 24.7 mm/min,油松林的只有 18.3 mm/min,但随着时间的推移,入渗速率逐渐减慢,当达到一定时间时趋于定值。最终的稳渗速率落叶松白桦混交林为 0.9 mm/min,落叶松林为 0.8 mm/min,油松林为 0.6 mm/min。分析主要原因为:落叶松白桦混交林土壤上下土层的非毛管孔隙数量多,有利于土壤水分的

快速下渗,土壤的渗透性能强,而油松林土壤的非毛管孔隙较少,土壤的渗透性差。在入渗过程中,落叶松林和落叶松白桦混交林达到稳渗时的时间差不多,油松林与前两者相差较大,在 24 min 时达到稳渗。通过对入渗速率与入渗时间进行线性回归分析,发现

二者之间存在较好的幂函数关系(表 9):

$$f = at - b$$

($R^2 \ge 0.98$)

式中: *f* — 入渗速率(mm/min); *a*, *b* — 常数; *t* — 入渗时间(min)。

表 8	不同林	分类型十	壤的物理	性质
-----	-----	------	------	----

林分类型	土壤容重/ (g•cm ⁻³)	土壤厚度/ cm	自然含水率/	非毛管 空隙度/%	毛管 空隙度/%	总毛管 空隙度/%	土壤持水力/ (t•hm ⁻²)
叶松林	1.28	56	21.33	4.85	37.89	42.74	271.6
油松林	1.19	53	17.53	4.68	44.88	49.56	248.04
混交林	1.16	74	36.85	5.08	49.21	54.29	375.92

表 9 土壤渗透的速率及渗透数学模型

林分类型	初渗速率/ (mm • min ⁻¹)	稳渗速率/ (mm • min ⁻¹)	稳渗时间 / min	回归方程	R ² 值
落叶松林	20.9	0.8	30	f = 19.982t - 0.9281	0.996
油松林	18.3	0.6	24	f = 20.121t - 1.0400	0.991
混交林	24.7	0.9	33	f = 29.680t - 1.0360	0.983

4 结论

- (1) 滦河上游不同类型种林分枯落物结构不同,水文相应也有所差异,3 种不同林分类型枯落物的生物量在 $5.54 \sim 12.03 \text{ t/hm}^2$,其中油松林枯落物的储量最大,落桦混交林的储量最小。
- (2) 枯落物最大持水量在 $11.9 \sim 19.4 \text{ t/hm}^2$,油 松林枯落物的持水量最大;枯落物最大持水率在 $233\% \sim 294\%$,落桦混交林的持水率最大;枯落物在 浸水的前 0.5 h 内吸水速率最大,6 h 左右时吸水速率明显减缓;油松林的有效拦蓄能力最强,为 23.52 t/hm^2 ,落叶松白桦混交林有效拦蓄能力最弱。
- (3) 落叶松白桦混交林土壤层持水能力最强,为 375.92 t/hm^2 ,油松林最小为 248.04 t/hm^2 ;不同林分土壤的初渗速率相差较大,华北落叶松白桦混交林的初渗速率最大,为 24.7 mm/min,但是 $3 \text{ 种林分土壤的稳渗速率相近,对入渗速率和入渗时间进行拟和,相关系数 } <math>R^2$ 在 0.98 以上。

[参考文献]

- [1] 于志明,王礼先. 水源涵养林效益研究[M]. 北京:中国 林业出版社,1991;32-37.
- [2] 吴钦孝,赵鸿雁. 森林枯枝落叶层涵养水源保持水土的作用评价[J]. 水土保持学报,1998,4(2):23-28.
- [3] 王雄宾,余新晓.华北土石山区油松林生态系统健康评价[J].中国水土保持科学,2009,7(1):97-102.
- [4] 张振明,余新晓.不同林分枯落物层的水文生态功能 [J].水土保持学报,2006,19(3);139-143.
- [5] Kavvaadias V A, Alifragis D, Tsiontsis A, et al. Litter

- fall litter accumulation and litter decomposition rates in four forest ecosystem in Northern Greece [J]. Forest Ecology Management, 2001,144(1/2/3):113-117.
- [6] 王卫军,赵婵璞,姜鹏,等.塞罕坝华北落叶松人工林水源涵养功能研究[J].中南林业科技大学学报,2013,33 (2):66-68.
- [7] Nunez D, Nahuelhual L, Oyarzun C. Forests and water: the value of native forests in supplying water for human consumption [J]. Ecological Economics, 2006 (5): 606-616
- [8] 鲁绍伟,陈波,潘青华,等. 北京山地不同密度侧柏人工 林枯落物及土壤水文效应[J]. 水土保持学报,2013,27, (1),224-229.
- [9] 徐娟,余新晓.北京十三陵不同林分枯落物层和土壤层 水文效应研究[J].水土保持学报,2009,23(3):189-193.
- [10] 韩同吉,裴胜民,张光灿,等. 北方石质山区典型林分枯落物层涵蓄水分特征[J]. 山东农业大学学报,2005,36 (2):275-278.
- [11] 胡淑萍,余新晓.北京百花山森林枯落物层和土壤层水 文效应研究[J].水土保持学报,2008,22(1):146-150.
- [12] 朱丽晖,李冬. 辽东山区天然次生林枯落物层的水文生态功能[J]. 辽宁林业科技,2001(1):35-37.
- [13] 饶良懿,朱金兆,毕华兴.重庆四面山森林枯落物和土壤 水文效应[J].北京林业大学学报,2005,27(1):33-37.
- [14] 刘世荣,温远光,王兵,等. 中国森林生态系统水文生态功能规律[M]. 北京:中国林业出版社,1996.
- [15] 孙艳红,张洪江,程金花,等. 缙云山不同林地类型土壤 特性及其水源涵养功能[J]. 水土保持学报,2006,20 (2):106-109.
- [16] 田育新,李锡泉,吴建平,等. 小流域森林生态系统林地 土壤渗透性能研究[J]. 水土保持研究,2006,13(4): 173-175.