Mualem 模型中的饱和导水率修正研究

张 昊, 顾强康, 张仁义

(空军工程大学 机场建筑工程系,陕西 西安 710038)

摘 要: [目的] 提高 Mualem 模型计算非饱和导水率的准确性。[方法] 采用理论推导结合数据统计的方 法研究该模型中的饱和导水率 k, 修正问题。基于 Brooks—Corey 土壤水分特征曲线模型,建立修正导水 率 k。与土壤水分特征曲线之间的理论关系式;通过回归分析得到 k。与土壤水分特征曲线之间的理论关系 式中相关参数。[结果] 利用原状黄土的非饱和渗透试验数据,对考虑修正导水率 k。的 Mualem 模型的准 确性进行了验证,得到了比较满意的结果。[结论] 研究成果可用于依据土壤水分特征曲线直接确定非饱 和土导水率,对非饱和导水率预测研究具有一定参考价值。

 关键词:非饱和土;非饱和导水率;Mualem 模型;饱和导水率;修正导水率;土壤水分特征曲线

 文献标识码:
 入章编号:1000-288X(2015)03-0168-04
 中图分类号:TU43

 DOI:10.13961/j.cnki.stbctb.2015.03.003

Modification of Saturated Hydraulic Conductivity in Mualem Model

ZHANG Hao, GU Qiangkang, ZHANG Renyi

(Department of Airport Architectural Engineering, Air Force Engineering University, Xi'an, Shaanxi 710038, China)

Abstract: [Objective] In order to improve the accuracy of saturated hydraulic conductivity in the Mualem model. [Methods] The modification of the saturated hydraulic conductivity k_s in the Mualem model was studied by theoretical method combined with data statistics. Based on the Brooks—Corey soil-water characteristic curve (SWCC) of unsaturated soil, a theoretical relationship between modified hydraulic conductivity and SWCC was presented, in which the correlation parameter was solved by regression analysis. [Results] Experimental data of undisturbed loess were used to evaluate the prediction outcomes of the Mualem model considering modified hydraulic conductivity k_o , which showed satisfactory result. [Conclusion] This theoretical model can be used to determine unsaturated hydraulic conductivity directly from SWCC, which possesses some references for further research on the prediction of unsaturated hydraulic conductivity.

Keywords: unsaturated soils; unsaturated hydraulic conductivity; Mualem model; saturated hydraulic conductivity; modified hydraulic conductivity; soil-water characteristic curve

非饱和导水率是非饱和土研究中的一项重要内容。由于基质吸力的存在,不能用常规的测定饱和导 水率的试验方法来确定非饱和导水率,使得非饱和导 水率的确定具有很大的难度^[1]。通过土壤水分特征 曲线来间接预测导水率的方法已得到广泛认可。

Mualem 非饱和导水率模型^[2]因形式简洁、适用 性良好而被广泛应用于非饱和导水率间接测定。饱 和导水率 k, 是模型的重要参数, Mualem 认为在非饱 和渗流中, 孔隙完全饱和时的导水率等于饱和渗流中 的导水率。然而, 饱和渗流与非饱和渗流的机理并不 完全相同。van Genuchten^[3]认为饱和导水率 k, 主要 反映外力引起水在土孔隙中的流动特性, 而非饱和渗 流主要是由土体内部吸力引起的; HoffmannRiem^[4]也认为 Mualem 需要通过修正来提高非饱和 导水率的计算准确度; Marcel^[4]通过对 235 组土样分 析,认为 Mualem 模型中饱和导水率 k_s 应替换成修 正导水率 k_s ,并且 k_s 比 k_s 小一个数量级。

将饱和导水率 k, 用导水率 k, 来修正,可以提高 Mualem 模型的计算准确性。无法直接测定的修正 导水率 k, 的取值则成为非饱和导水率间接测定研究 中的重要问题。本文用理论推导结合数据统计的方 法,探讨 Mualem 模型中的饱和导水率 k, 的修正问 题,尝试得到一个可以依据土壤水分特征曲线直接计 算非 饱和 土 导水 率 的 Mualem 修正 模型。基于 Brooks—Corey 土壤水分特征曲线模型,首先建立修 正导水率 k, 与土壤水分特征曲线之间的理论关系

收稿日期:2014-11-12 修回日期:2014-12-02

资助项目:省部级项目"陕西延安机场工程"

第一作者:张昊(1991—),男(汉族),江苏省南京市人,硕士研究生,研究方向为地基处理与边坡稳定。E-mail.fourapril@sina.cn。

式,然后通过回归分析求解相关参数,最后利用原状 黄土的非饱和渗透试验数据对研究结果进行验证。

1 考虑修正导水率的 Mualem 模型

 1.1 修正导水率与土壤水分特征曲线之间关系的理 论推导

非饱和导水率模型的计算式可写成如下形式:

$$k = k_0 k_r \tag{1}$$

在 Mualem 模型中, k_a 无法直接测量,是一个与 孔隙半径有关的参数。Mualem 认为 k_a 等于饱和导 水率 k_s , 而 k_s 可通过试验直接测定。然而在该模型 中, k_a 是非饱和导水率曲线上的一点,其产生机理与 饱和导水率 k_s 并不完全相同。van Genuchten 认为 k_a 不等于 k_s 的原因是二者的驱动力不同; Marcel 通 过数据分析认为 k_s 比 k_a 大一个数量级。所以需要 对 Mualem 模型中的饱和导水率 k_s 加以修正。

土的孔隙是一个互相连通的随机系统,非饱和导 水率表征水在孔隙的流动特性,Mualem 方程、van Genuchten 方程、Childs and Collis—George^[5]方程 都说明孔隙分布与非饱和导水率存在对应关系。 Marshall^[6],Toledo^[7]和 Xu^[8]利用土体基于孔隙分 形得出了相应的土壤水分特征曲线计算方程,说明土 壤水分特征曲线能够间接表征孔隙分布情况。土体 孔隙的大小可通过孔隙半径 r 表征。Mualem 通过 体积含水量定义孔隙的分布函数 f(r):

$$f(r) = \frac{\mathrm{d}\theta}{\mathrm{d}r} \tag{2}$$

则最小孔隙半径为 R_{min} 的土体中,孔隙半径R以下的孔隙水的体积含水量可由f(r)的积分形式来表示,即:

$$\theta(R) = \int_{R_{\min}}^{R} f(r) \, \mathrm{d}r + \theta_r \tag{3}$$

式中: θ_r ——残余体积含水量 (cm^3/cm^3) ; R_{min} ——孔 隙半径(m)。

当被水充满的最大孔隙半径等于土体最大孔隙 半径 R_{max}时,土体处于饱和状态,即:

$$\theta_s = \theta(R_{\max}) = \int_{R_{\min}}^{R_{\max}} f(r) dr + \theta_r$$
(4)

式中: θ_s ——土体的饱和体积含水量 (cm^3/cm^3) 。

Yang-Lapalce 在毛管模型中给出的半径 <math>r 与 对应的吸力:

$$\psi = \frac{2T_s \cos\alpha}{r} \tag{5}$$

Brooks—Corey 土壤水分特征曲线模型为:

$$S_{e} = \frac{\theta - \theta_{r}}{\theta_{s} - \theta_{r}} = \left(\frac{\psi_{e}}{\psi}\right)^{\lambda} \tag{6}$$

式中: ϕ ——基质吸力(kPa); ϕ_e ——进气值(kPa); λ ——孔隙尺寸分布指标。

Mualem 认为孔隙在三维空间上的体积分布与 二维空间上的面积分布相同,即在面积分布密度函数 为体积分布密度函数 *f*(*r*)。在图 1 所示的模型的基 础上建立了非饱和土导水率理论公式。

图 1 Mualem 双管联通模型

Mualem 认为半径 r 和半径 ρ 孔隙联通的概率为 $r\rho f(r) f(\rho)$ 。因为 $r\rho f(r) f(\rho)$ 没有反映出水的渗流 具有方向性,引入一个迂曲度因子 T(0 < T < 1)。考 虑到孔隙的实际形状,再引入反映孔隙形状参数 M。 修正导水率的理论计算公式:

 $k_{0} = MT \int_{R_{\min}}^{R_{\max}} \int_{R_{\min}}^{R_{\max}} r\rho f(r) f(\rho) dr d\rho$ (7)

将式(3)、式(5)和式(6)代入式(7),进行换元积 分后有:

$$\int_{R_{\min}}^{R_{\max}} rf(r) dr = \int_{\theta_r}^{\theta_s} \frac{2T_s \cos\alpha}{\psi} d\theta$$
$$= \frac{2T_s \cos\alpha}{\psi_e} \left(\frac{\lambda}{\lambda+1}\right) (\theta_s - \theta_r)$$
(8)

故修正导水率 k₀为:

$$k_{0} = \frac{4MTT_{s}^{2}\cos^{2}\alpha}{\psi_{e}^{2}} \left(\frac{\lambda}{\lambda+1}\right)^{2} (\theta_{s} - \theta_{r})^{2} \qquad (9)$$

参数 M 和 T 反映孔隙的形状,目前还没有有效 的测试方法,Childs,Collis—George,Millington 和 Quirk^[9],Burdine^[10],Kunze^[11]和 Mualem 都认为 M与 T 的乘积与有效体积含水量呈幂指数关系,即:

$$MT = B(\theta_s - \theta_r)^l \tag{10}$$

式中:*B*——常数。Childs 和 Collis—George 认为 *l* 取 0, Millington 和 Quirk 认为 *l* 取 4/3, Mualem 认 为 *l* 取 0.5。将式(10)代入式(9),得:

$$k_0 = A \frac{(\theta_s - \theta_r)^{2.5}}{\psi_e^2} \left(\frac{\lambda}{\lambda + 1}\right)^2 \tag{11}$$

式中:A——常数,式(11)即为基于 Brooks—Corey 土壤水分特征曲线得到的修正导水率与土壤水分特 征曲线理论关系。

1.2 参数 A 的统计求解

常数 A 与孔隙形状、重力加速度、水的表面张 力、浸润角、水的粘滞性有关。下面通过数据统计的 方法对参数 A 的取值问题进行分析。Rawls 依据粒 径组成将 5 371 组土细分成 11 类^[12],统计出了各类 土 Brooks—Corey 土壤水分特征曲线参数平均值,并 根据非饱和导水率曲线给出了相应的修正导水率(原 文标注为饱和导水率),结果如表1所示。常数A的 拟合结果如图2所示。将表1中的相关参数的单位 换成常用单位,体积含水量的单位取 cm³/cm³,进气 值的单位取 kPa,导水率的单位取 m/s。理论关系式 中参数的统计求解结果如图2所示。

表 1 Rawls 非饱和渗流参数统计结果

土类	样本数	$ heta_s$ 均值/ $(\mathrm{cm}^3 \cdot \mathrm{cm}^{-3})$	$ heta_r$ 均值/ $(\mathrm{cm}^3\cdot\mathrm{cm}^{-3})$	$egin{array}{c} \psi_e \ egin{array}{c} eta \ eta \end{array} & \ \mathrm{cm} \end{array}$	λ均值	$k_o/$ (cm • h ⁻¹)
砂土	762	0.437	0.020	15.98	0.694	21
壤质砂土	338	0.437	0.035	20.58	0.553	6.11
砂质壤土	666	0.453	0.041	30.20	0.378	2.59
壤土	383	0.463	0.027	40.12	0.252	1.32
粉质壤土	1 206	0.501	0.015	50.87	0.234	0.68
砂质黏壤土	498	0.398	0.068	59.41	0.319	0.43
黏壤土	366	0.464	0.075	56.43	0.242	0.23
粉质黏壤土	689	0.471	0.040	70.33	0.177	0.15
砂质黏土	45	0.430	0.109	79.48	0.223	0.12
粉质黏土	127	0.479	0.056	76.54	0.150	0.09
黏 土	291	0.475	0.090	85.60	0.165	0.06

由图 2 可以看出,数据点分布在拟合直线附近, 相关系数达到 0.984。11 类土的统计结果说明,修正 导水率与土壤水分特征曲线参数之间呈现如式(11) 所示的理论关系。拟合结果还说明,对不同的土类, 式(11)中的参数 *A* 可以看成一个常数,其值可取 0.007 28(m•kPa²)/s。

Mualem 模型的修正导水率与土壤水分特征曲 线参数之间的定量关系是:

$$k_0 = 0.007 \ 28 \ \frac{(\theta_s - \theta_r)^{2.5}}{\psi_e^2} \left(\frac{\lambda}{\lambda + 1}\right)^2 \qquad (12)$$

将 Brooks—Corey 土壤水分特征曲线模型带入 Mualem 模型得到的相对导水率 k_r 为:

$$k_r = S_e^\delta \tag{13}$$

式中:δ——经验常数,与孔隙尺寸分布指标 λ 有如下 关系: $\delta = \frac{2+2.5\lambda}{\lambda} \tag{14}$

将式(12)到(14)代入式(1),即得到考虑修正导 水率 k₀ 的 Mualem 非饱和导水率模型:

$$k = 0.007 \ 28 \ \frac{(\theta_s - \theta_r)^{-2/\lambda}}{\psi_e^2} \left(\frac{\lambda}{\lambda + 1}\right)^2 (\theta - \theta_r)^{(2.5 + 2/\lambda)} \ (15)$$

和原始模型比较, Mualem 修正模型可以依据土 壤水分特征曲线直接确定非饱和土导水率,并考虑了 饱和导水率 k, 的修正。模型形式简洁,参数较少,是 一个确定非饱和土导水率的简单方法。

2 试验验证

姚志华^[13]对兰州和平镇的原状黄土的土壤水分 特征曲线和非饱和导水率进行了测定。试验采用 2~3 m之间的原状黄土,平均干密度 1.28 g/cm³,平 均含水量 6.2%,颗粒的相对密度 2.71,液限平均值 为 28.7%,塑限为 17.6%(以上指标均为 2~3 m 之 间均值)。土壤水分特性曲线的测定结果如图 3。用 Brooks—Corey 模型对土壤水分特性曲线的结果进 行拟合,结果如表 2 所示。本文用姚志华试验得到的 非饱和渗流参数试验数据,对本文得出的 Mualem 修 正模型进行检验。

利用式(15)计算得到的理论值与实测结果进行 比较,结果示于图 4。

原文是通过扩散率与容水率计算得到非饱和导

水率,在计算扩散率过程中,对实测体积含水率曲线 进行平滑修正^[14],导致修正段前后一定范围内的导 水率计算值偏离了真实值,修正段换算为饱和度正处 于 0.55 到 0.8 区间内。图 4显示在饱和度为 0.8 时 非饱和导水率为 2.10×10⁻⁵ m/s,而姚志华实测得该 土样的饱和导水率为 2.76×10⁻⁶ m/s,前者比后者大 一个数量级。从图 4 可以看出,饱和度小于 0.55 段 内,导水率理论曲线与试验点吻合度高,认为本文对 Muale-m 模型的修正结果合理。

3 结论

饱和导水率 k,影响 Mualem 模型计算准确性,用 理论推导结合数据统计的方法对 Mualem 模型中的 饱和导水率 k,进行了修正。主要工作如下:

(1)将 Mualem 模型中的饱和导水率 k, 替换成 修正导水率 k, 基于 Brooks—Corey 土壤水分特征曲 线模型,建立修正导水率 k, 与土壤水分特征曲线之 间的理论关系式,用数据统计的方法求解理论关系式 中的相关参数。得到一个可以通过土壤水分特征曲 线直接确定非饱和土导水率的 Mualem 修正模型。 (2)利用兰州和平镇的原状黄土的非饱和渗流 参数试验数据对 Mualem 修正模型的准确性进行检验,试验值与理论曲线吻合性高,取得很好的检验 结果。

(3) 用于对本文得到的 Mualem 修正模型的检 验数据较少,研究成果的普遍适用性还需要进一步的 研究。

[参考文献]

- [1] 谢定义,陈正汉.非饱和土力学特性的理论与测试[C]// 土力学及基础工程学会.非饱和土理论与实践学术研讨 会文集.北京:北京科技出版社,1992:227-229.
- [2] Mualem Y. A new model for predicting the hydraulic conductivity of unsaturated porous media [J]. Water Resources Research, 1976,12(3):513-522.
- [3] van Genuchten M T, Nielsen D R. On describing and predicting the hydraulic properties of unsaturated soils[J]. Ann. Geophys., 1985,3(5):615-628.
- [4] Schaap M G, Leij F J. Improved prediction of unsaturated hydraulic conductivity with the Mualem—van Genuchten model[J]. Soil Science Society of America Journal, 2000,64(3):843-851.
- [5] Childs E C, Collis—George N. The permeability of porous materials[J]. Proceedings of the Royal Society of London(Series A): Mathematical and Physical Sciences, 1950,201,1066:392-405.
- [6] Marshall T J. A relation between permeability and size distribution of pores[J]. Journal of Soil Science, 1958,9 (1): 1-8.
- [7] Toledo P G, Novy R A, Davis H T, et al. Hydraulic conductivity of porous media at low water content[J]. Soil Science Society of America Journal, 1990, 54(3): 673-679.
- [8] Xu Y. Calculation of unsaturated hydraulic conductivity using a fractal model for the pore-size distribution[J]. Computers and Geotechnics, 2004,31(7):549-557.
- [9] Millington R J, Quirk J P. Permeability of porous solids[J]. Trans. Faraday Soc. , 1961,57:1200-1207.
- [10] Burdine N T. Relative permeability calculations from pore size distribution data[J]. Journal of Petroleum Technology, 1953,5(3):71-78.
- [11] Kunze R J, Uehara G, Graham K. Factors important in the calculation of hydraulic conductivity[J]. Soil Science Society of America Journal, 1968,32(6):760-765.
- [12] Rawls W J, Brakensiek D L. Prediction of soil water properties for hydrologic modeling[C]. ASCE, 1985.
- [13] 姚志华,陈正汉,黄雪峰,等.非饱和原状和重塑 Q₃黄 土渗水特性研究[J].岩土工程学报,2012,34(6): 1020-1027.
- [14] 雷志栋,杨诗秀,谢森传.土壤水动力学[M].北京:清 华大学出版社,1988;21,92-94.