青海省共和盆地光伏发电基地风沙灾害 现状、成因及其防治措施

谭立海¹,马鹿²,安志山¹,屈建军¹,殷代英¹,刘进辉¹,王涛¹ (1.中国科学院西北生态环境资源研究院,敦煌戈壁荒漠研究站,甘肃省风沙灾害防治

工程技术研究中心,甘肃 兰州 730000;2.青海黄河上游水电开发有限责任公司,青海 西宁 810008)

摘 要:[目的]分析青海省共和盆地塔拉滩光伏发电基地风沙灾害现状,并探讨风沙灾害的成因,提出相应的防治对策。[方法]利用徕卡全站仪对光伏发电基地沙丘移动速率以及典型电站积沙量进行了实地测量,并结合气象资料分析了风沙灾害形成的区域风沙环境特征。[结果]沙丘前移与风沙流遇阻后在太阳能板间形成积沙是该区风沙危害的主要表现形式:该区沙丘类型以新月形沙丘为主,移动速度达 12.56 m/a;在一面积 99 hm²、风沙灾害最为严重的光伏园区内,2016 年 2—4 月 3 个月内上风向光伏板间积沙可达 3 090 m³;研究区属中能风沙环境,为单峰风况,起沙风以西风和西北西风为主,两组风向占年输沙势的 92.1%。[结论]风力强劲、风旱同期等自然特点以及过度放牧导致的土地沙漠化提供沙源是该区风沙灾害的主要成因,亟需建立固沙与阻沙措施相结合的风沙灾害综合防治体系进行风沙灾害防治。

关键词:光伏;风沙灾害;防治模式;共和盆地

文献标识码: A 文章编号: 1000-288X(2017)03-0182-06 中图分类号: P425.6⁺1

.

文献参数: 谭立海,马鹿,安志山,等.青海省共和盆地光伏发电基地风沙灾害现状、成因及其防治措施 [J].水土保持通报,2017,37(3):182-187. DOI:10.13961/j. cnki. stbctb. 2017.03.030; Tan Lihai, Ma Lu, An Zhishan, et al. Present situation, causes and control measures of aeolian sand disaster in photovoltaic power generation base in Gonghe Basin, Qinghai Province[J]. Bulletin of Soil and Water Conservation, 2017,37(3):182-187. DOI:10.13961/j. cnki. stbctb. 2017.03.030

Present Situation, Causes and Control Measures of Aeolian Sand Disaster in Photovoltaic Power Generation Base in Gonghe Basin, Qinghai Province

TAN Lihai¹, MA Lu², AN Zhishan¹, QU Jianjun¹, YIN Daiying¹, LIU Jinhui¹, WANG Tao¹

(1. Gansu Center for Sand Hazard Reduction Engineering and Technology, Dunhuang Gobi Desert Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China; 2. Huanghe Hydropower Development Co., Ltd., Xining, Qinghai 810008, China)

Abstract: [Objective] To reveal the current situation of aeolian hazards in the photovoltaic industrial park of Gonghe Basin, Qinghai Province, and to analyze the causes and thus to put forward specific control measures. [Methods] Dune migration rate and the current situation of aeolian hazards such as sand accumulation amount were measured by Leica total station, and meteorological data were used to analyze the characteristics of regional aeolian environment. [Results] Dune migration and sand accumulation between solar panels were two main patterns of aeolian sand disaster in the study area where dunes were mainly composed of barchans. Sand dunes moved in a rate of 12.56 m/a in the study area. In a photovoltaic garden(99 hm² in area) suffering from severe aeolian sand disaster, the accumulated sand between solar panels could reach 3 090 m³ during February to April of 2016. The study area belongs to the medium level of aeolian environment with two main

收稿日期:2016-09-23 修回日期:2016-11-28

资助项目:黄河水利水电公司项目"光伏产业带动生态建设试验示范研究"(90Y490B21);国网河北省电力公司项目(SGTYHT/16-JS-198) 第一作者:谭立海(1985—),男(汉族),山东省临朐县人,博士,助理研究员,主要从事风沙物理与风沙工程学研究。E-mail:tanlihai18 @163.com。

通讯作者:屈建军(1959一),男(汉族),陕西省高陵县人,博士,研究员,博导,主要从事风沙工程学研究。E-mail:qujianj@lzb.ac.cn。

prevail sand-driving wind directions of west and north west, which accounted for 92.1% of the annual drift potential. [Conclusion] The strong wind energy, the features of windy and dry weather presenting in the same period and the strong desertification result in the serious aeolian sand disaster in the study area. Hence, a comprehensive sand-control system should be quickly established to combat the aeolian sand disaster.

Keywords: photovoltaic industry; aeolian sand disaster; control measures; Gonghe Basin

太阳能光伏等新能源产业可以改变化石燃料为 主的能源格局,缓解能源紧缺,推进节能减排,对建设 资源节约型和环境友好型社会具有重要意义[1]。青 海省是中国太阳能最为丰富的地区之一,日照时间 长,且有着广阔的荒漠地区,可利用土地面积大,地势 平坦,为开发利用太阳能提供了有利的土地条件[2]。 共和盆地是青海省开发光电新能源的主要区域之一, 目前共和盆地光伏产业园区占地面积达 76.6 km², 总装机容量为1490 MW^[3],并与龙羊峡水电实现互 补,对促进西部地区社会经济可持续发展具有重要的 意义。然而,近年来,在全球气候变暖的背景下,青海 高原出现草地退化、沙漠化加剧等一系列生态问题, 土地沙漠化已经成为共和盆地生态环境恶化的主要 问题[4-5]。共和盆地的沙漠化土地占共和盆地面积的 62.84%,主要分布在塔拉滩及黄河以南的木格滩地 区,沙漠化土地以流动沙丘、半固定沙丘为主[6]。横 跨共和盆地的3条绵延数百公里沙带,自西南向东北 逐步延伸,风沙危害不断加剧,一条面积为2.80× 10⁵ hm² 的新月型沙丘链已经抵达黄河上游龙羊峡 库区,其中塔拉滩沙丘是最主要部分[7]。在此背景 下,共和盆地塔拉滩地区发展光伏产业势必受到风沙 危害的影响。本文拟对青海共和盆地塔拉滩光伏发 电基地风沙灾害现状进行实地调查与测量,分析风沙 灾害的形成原因,以期提出相应的防治措施。

1 研究区概况

共和盆地位于青藏高原东北部,地理坐标为 98°46′—101°22′E和 35°27′—36°56′N,整个盆地呈 东宽西窄的葫芦形,东西长约 210 km,南北宽约 60 km,总面积 13 800 km²^[8]。研究区位于共和盆地塔 拉滩地区。该区海拔 2 900~3 100 m,年均温 1.0~ 5.2℃,属典型的高寒干旱荒漠和半干旱草原区,气 候长期高寒、干旱与多风;多年平均降水量 303 mm, 全年降水量的 90.4%集中于 5—9月,蒸发量达到 1 800 mm,是降水量的 6 倍^[9]。该区多年平均大风 日数51 d,多年沙尘暴日数平均为 16 d,最多达 55 d, 大风主要发生在冬春两季。土壤主要为栗钙土,土层 厚度一般是 50—70 cm。研究表明,研究区所在的塔 拉滩是共和盆地沙漠化土地的主要分布区,以流动沙 丘和半固定沙丘为主^[8]。

2 风沙灾害现状

研究区内沙害较为严重的区域为光伏基地的西 北侧与中部地区。活化沙丘移动和风沙流是威胁共 和光伏基地电厂安全运营的2种主要风沙危害方式。 该区沙丘主要以新月形沙丘及沙丘链组成,移动速度 快,对光伏电站潜在危害大;其次,风沙流在遇到光伏 电站后,由于光伏电站增大了地表粗糙度并在站前上 风向和内部形成减速区,造成积沙。经粒度分析表 明,该区沙丘沙以极细沙与细沙为主,平均粒径为 0.107 mm(图 1),根据 Bagnold^[10]的研究,该粒径沙 粒极易起动形成风沙流。

为定量评估区域风沙灾害现状,笔者利用全站仪 对研究区域内典型光伏矩阵内的积沙形态以及周边 沙丘动态变化进行了测量。使用全站仪型号为 Leica TS06,是徕卡 TS 系列中一款专业型全站仪,测量偏 差约1.5 mm。沙丘脊线测量选用有棱镜测量模式, 其他沙丘各点采用无棱镜模式,测点密度约为1m× 1 m。以监测的典型风沙灾害光伏电站为例,具体说 明以上两种方式风沙危害现状。所监测光伏电站园 区东西长1100 m,南北宽900 m,园区于2016年2 月8日对电站西侧、北侧积沙进行过清理,清理工作 持续7d时间,然而,清沙没有达到预期效果,仅3个 月时间,电站积沙危害又相当严重。据测量发现,电站 矩阵西南角沙丘前缘已延伸至电站边缘,沙丘高度与 太阳能板高度相当,积沙体长度为48m,宽12.8m,平 均高度 1.81 m,积沙量为 1 112.06 m³,沙丘移动将很 快掩埋光伏矩阵;其中,新月形沙丘一兽角已绕过电 站西南角,最大高度为1.9 m,长约20 m,经测量计算

该沙丘体积为 256.53 m³。电站西侧中部板间积沙体呈舌状,经测量计算,大型舌状积沙体平均积沙量 大为 70.84 m³,中型积沙体平均积沙量为 47.13 m³, 而小型积沙体平均积沙量为14.87 m³。经统计,板间 大型积沙体 14个,中型 42个,小型 8个,板间总积沙 量为 3 090.18 m³。综上风沙灾害现状,如不及时采 取有效防沙工程措施,光伏电站上方向将会被沙丘埋 没,严重影响光伏电站的安全运营。

为更清晰表述所监测沙丘动态变化特征,笔者分 别于 2015 年 6 月与 2016 年 7 月对监测光伏电站外 围边界一典型沙丘进行了 2 期沙丘动态变化监测。 分别沿沙丘走向、垂直沙丘走向截取沙丘断面。其 中,纵断面(图 2a)为沿沙丘走向截取的断面,横断面 1(图 2b)为沙丘上风向断面,横断面 2(图 2c)为沙丘 中部的断面,横断面 3(图 2d)为沙丘尾部的断面。

首先,由纵断面图可知(图 2a),沙丘断面形态变

化很大。第一,断面线的长度由 2015 年 6 月的 65.8 m 增加到 2016 年 7 月的 79.4 m,增加 13.6 m;第二, 断面线的最高点高度由 3.0 m 下降为 2.5 m;第三, 断面线中部 20~40 m 内发生风蚀,断面线高度降 低。根据沙丘前缘边界前移距离判断,沙丘的年移动 速率为 12.56 m/a。

其次,比对 2015 年 6 月和 2016 年 7 月的横断面 图 2b,图 2c,图 2d(标号顺序从上风向到下风向)可 知:在风力作用下,沙丘各个部位的断面线同样发生 很大变化。与 2015 年 6 月的横断面 1(图 2b)相比, 2016 年 7 月的断面线宽度增加 1.22 m,断面最高点 高度降低 0.52 m,且断面形态由倒"V"型变为倒"U" 型,表明沙丘体积增大;横断面 2(图 2c)断面线宽度 增加 0.4 m,断面最高点高度降低 0.67 m,而断面顶 点两端的坡度减小;横断面 3(图 2d)的断面线宽度减 少 3.3 m,但断面线最高点高度增加 0.03 m。

3 风沙灾害成因分析

3.1 风沙环境

3.1.1 起沙风况 起沙风是确定风沙活动发生与否 及其活动强度的重要依据,也是研究风沙运动规律、 解决风沙工程问题的关键指标之一。根据实地观测, 共和盆地塔拉滩地区2m高起沙风速为6m/s。统 计分析2015—2016年该区气象资料表明,研究区起 沙风频率为9.96%(图3)。从风速分级来看,6~8和 8~10 m/s 风速段分别占起沙风频率的 44.13%和 28.90%,两者共占起沙风频率的 73.03%,而 10~12 m/s 以及大于 12 m/s 风速分别占起沙风频率的 13.41%和 13.55%。从风向来看,W 和 WNW 风向分别占起沙风频率的 47.36%和 29.32%,两者占起 沙风的 76.69%;其次是 ENE 风向,占起沙风频率的 11.39%,再就是 WSW 风向,占起沙风频率的 8.16%。因此,研究区起沙风主要为 W 和 WNW 两 组风向,以 6~10 m/s 风速段为主。

图 3 2015-2016年共和盆地塔拉滩起沙风玫瑰图

3.1.2 输沙势 输沙势是目前风沙活动强度计算中 应用最为广泛的方法^[11-12],而且是衡量区域风沙活动 强度极其重要的指标^[13]。Fryberger^[14]对 Lettau^[15] 的输沙率公式进行修改并提出了如下被广泛接受和 应用的输沙势计算公式:

$$DP = V^2 (V - V_t) t \tag{1}$$

式中:DP——输沙势(VU); V——大于起动风速值 的风速(m/s); V_i——起动风速(m/s); t——起沙风 作用时间,在统计表中以频率(%)表示。通过矢量合 成法将16个方位输沙势进行合成后可以得到合成输 沙势(RDP)和合成输沙方向(RDD),它反映了一个地 区输沙能力的大小和输沙净走向。合成输沙势与输 沙势的比值称为方向变率(RDP/DP),用来反映一个 地区风向组合情况和风信复杂的程度。Fryberger 根 据输沙势大小分为高(>400)、中(200~400)、低(< 200)3种风能环境。RDP/DP 值越大说明风信情况 越单一,越小则说明风信越复杂。一般而言,小比率 (<0.3)往往与复合风况相对应;中比率(0.3~0.8) 对应锐双峰或钝双峰风况;而大比率(>0.8)则对应 于单峰风况。

通过对区域内所架设气象站 2015 年 7 月至 2016 年 6 月风况资料的分析,结果表明,该区年输沙势为 212.7 VU,属中风能环境,合成方向为 99.6°,合成输 沙势与总输沙势比值(RDP/DP)为 0.87,表明该区域 为单峰风况,起沙风以 W 和 WNW 风为主,占时段总 输沙势的 92.1%(图 4)。光伏基地西北侧新月形沙 丘及沙丘链为区域风沙流提供了丰富的沙源,而且正 好与起沙风主风向 W 和 WNW 风相叠加,在偏西风 作用下,沙丘移动以及风沙流积沙对电站造成严重的 危害。

3.1.3 风旱同季 分析研究区月平均降水量和2m

平均风速关系可知,降水量与风速存在反比关系,即 风速较大时,降水量较小;风速较小时,降水量则较 大,属于典型的"风旱同季"(图 5)。共和盆地光伏基 地 1—4 月风速较大,2 m 高月平均风速最大可达 8.64 m/s,而此时段降水较少。冬春季节,降水量较 小,植被盖度较低,对土壤保护作用减小,地表抗风蚀 能力较小,而同期风速较大,极易造成土壤风蚀,破坏 地表,形成更多的碎屑物质。夏季,平均风速降低,风 蚀减弱,而同期降水量增大,河流径流量增大,水蚀增 强。可见,"风旱同季"形成风蚀、水蚀交替出现的环 境,导致地表土壤结构离散分解增强,进一步加剧了 地表风沙活动的强度。

图 5 研究区 2015 年 7 月至 2016 年 6 月 2 m 高度处月平均风速与月平均降水量

3.2 人为影响

人为因素导致的土地沙漠化为风沙灾害的形成 提供了丰富的沙源。研究表明,2005年共和盆地共 有各类沙漠化土地7419.62km²,其中严重沙漠化和 重度沙漠化土地面积占沙漠化土地总面积的 20.12%^[5]。塔拉滩是共和盆地土地沙化最为严重的 地区,总面积约2.96×10⁵hm²,如今已有26%的土 地严重沙化,42%的土地正在沙化^[6]。共和盆地的土 地沙漠化主要是由农牧人口、牲畜数量迅猛增加以及 过度开垦草地为耕地引起的^[4]。1953—2004年的 50a来,共和农牧人口呈持续增加趋势:1953年全县 农牧人口仅4.04万,到2004年增加到12.64万,增 加了2.13倍(图6)。过度放牧是共和盆地土地沙漠

4 风沙灾害综合治理模式

基于以上风沙灾害现状以及灾害成因,以上述监 测风沙灾害的光伏电站园区为例,说明该区风沙灾害 综合治理模式。综合防护体系主要由机械防沙措施 组成,分为前沿阻沙带、空白带以及固沙带组成。风 沙综合防护体系主要沿光伏电厂外围边界,综合防护 体系总面积约为152.8 hm²。其中,不同类型措施设 计主要依据地形条件、地表状况(紧实度、含沙量等) 具体而定。

4.1 前沿阻沙带

前沿阻沙带是整个防沙体系的最外围,也是最前沿,起到阻拦沙物质、降低风速的作用。前沿阻沙带 由三道 HDPE 网阻沙栅栏组成(1.5 m 高),阻沙栅栏 的总体走向依光伏电厂地形的变化而变化,总长度约 7 680 m,阻沙栅栏间距为 30 m。

4.2 固沙带

固沙带采用 HDPE 网固沙障固定沙丘。HDPE 固沙网采用环保树脂纤维制成,抗紫外线强,耐高温 (+75℃)和低温(-35℃),抗老化时间≥10 a;与其 他沙障相比,具有无污染、耐老化、低成本、可重复使 用与便于施工等优点。研究表明,采用环保先进的 HDPE 网固沙新材料制成的功能性固沙障,结构上为 上疏下密型来替代结构均一的普通塑料网沙障,不仅 可以增大下垫面的粗糙度,降低了底层风速,而且明 显减小地表风蚀,通过对产品丝径、密度的控制,使其 具有最佳的透风率,网与专用立柱配合可组合成各 种规格的固沙网格,能有效降低风速,抗风蚀能力强^[17]。

在阻沙栅栏下风向的沙丘地段,设置 HDPE 沙 障,平均宽度为 500 m,具体布局及宽度依沙丘走势 及形态确定。HDPE 沙障设置在阻沙栅栏的基部及 两侧各 5 m,防止栅栏基部掏蚀。HDPE 网固沙沙障 在沙丘迎风坡还是背风坡上方格都应适当加密,缩小 规格,加大用量。固沙网孔隙度采用"下密上疏"式结 构,可设置规格 1 m×1 m 的固沙带,孔隙度为 40%, 高度为 20 cm;根据当地地形,先按 1 m×1 m 格点打 桩,桩长度约 50 cm,埋深 30 cm,将固沙网固定在桩 上,底部紧贴沙面。此沙障效能模拟了稻草制成的草 方格,采用上疏下密结构设计,能有效固定流沙,抑制 掏蚀发生,形成稳定的凹曲面,使用寿命在 10~12 a, 而草方格使用寿命仅有 2~3 a。待沙床面稳定后,人 工撒播草种,植物以乡土物种为主,主要选用柠条、沙 蒿等当地物种。

5 结论

(1) 共和盆地光伏发电基地区域属中能风沙环境,为单峰风况,起沙风以 W 和 WNW 风为主,2 组风向占年输沙势的 92.1%。周边沙丘类型以新月形 沙丘为主,移动速度达 12.56 m/a。

(2)沙丘前移与风沙流遇阻后在光伏板间形成 积沙是该区风沙危害的主要表现形式。

(3)风力强劲、风旱同期等自然特点以及过度放 牧导致的土地沙漠化提供沙源是该区风沙灾害的主 要成因。

(4) 沙害初步治理模式为建立固、阻结合的风沙 危害综合防护体系。

[参考文献]

- [1] 陈龙珠,王军.新能源光伏产业的示范效应分析与对策[J].中国人口·资源与环境,2010,20(3):395-397.
- [2] 赵秉斌,于清阳.青海省风光互补开发清洁能源问题探 讨[J].科技信息,2010(34):795-796.
- [3] 马新.青海光伏追光逐日的高原绿城[J].青海科技, 2015(3):2-5.
- [4] 杨世琦,高旺盛,隋鹏,等.共和盆地土地沙漠化因素定量研究[J].生态学报,2005,25(12):3181-3187.
- [5] 严应存,高贵生,刘宝康,等.青海湖周边地区沙丘移动监测及其气候驱动力分析[J].中国沙漠,2009,29(4): 617-622.
- [6] 封建民. 基于 GIS 和 RS 的青海共和盆地土地沙漠化时 空演变研究[J]. 安徽农业科学,2010,38(4):1965-1967.
- [7] 王圣志. 黄沙直逼龙羊峡库区[J]. 草业科学,2004,21 (7):65-65.

- [8] 张登山.青海共和盆地土地沙漠化影响因子的定量分析 [J].中国沙漠,2000,20(1):59-62.
- [9] 赵训经,那文俊.青海省塔拉滩草原利用方向探讨[J]. 自然资源学报,1996,11(3):272-279.
- [10] Bagnold R A. The physics of wind blown sand and desert dunes[M]. London: Methuen, 1941.
- [11] Wasson R J, Hyde R. Factors determining desert dune type[J]. Nature, 1983,304(5924):337-339.
- [12] Livingstone I, Warren A. Aeolian Geomorphology: An Introduction[M]. Addison Wesley Longman Ltd, 1996.
- [13] Bullard J E. A note on the use of the "Fryberger method" for evaluating potential sand transport by wind[J]. Jour-

(上接第173页)

- [15] 陈秀端.陕西省粮食安全区域差异及驱动因素分析 [J].干旱区资源与环境,2007,21(8):116-120.
- [16] 范建刚,谢斌.西北五省区粮食生产灰色关联比较分析 [J].干旱区资源与环境,2007,21(8):121-125.
- [17] 刘定惠,朱超洪.安徽省粮食生产变化特征及其影响因 素分析[J].安徽农学通报,2009,15(5):30-32,41.
- [18] 何春花.河南省粮食生产影响因素的量化分析与对策 [D].郑州:河南农业大学,2009.
- [19] 杨忍,任志远,贵州省粮食安全与耕地压力时空动态变 化及驱动因素分析[J].农业系统科学与综合研究, 2009,25(2):159-162.
- [20] 刘丽辉,罗锋.我国粮食综合生产能力影响因素实证分 析[J].经济问题,2010(10):48-53.
- [21] 党夏宁,吴丹晨.陕西省粮食生产能力及影响因子分析 [J].西安财经学院学报,2011,24(6):54-58.
- [22] 范东君.粮食产量影响因素的实证分析与贡献率测算

(上接第181页)

- [7] 孙伟,陈雯.市域空间开发适宜性分区与布局引导研究: 以宁波市为例[J].自然资源学报,2009,24(3):402-413.
- [8] 王钊,杨山,王玉娟,等.基于最小阻力模型的城市空间 扩展冷热点格局分析:以苏锡常地区为例[J].经济地 理,2016,36(3):57-64.
- [9] Knaapen J P, Scheffer M, Harms B. Estimating habitat isolation in landscape planning[J]. Landscape & Urban Planning, 1992,23(1):1-16.
- [10] 叶玉瑶,苏泳娴,张虹鸥,等.生态阻力面模型构建及其 在城市扩展模拟中的应用[J].地理学报,2014,69(4):

nal of Sedimentary Research, 1997,67(3):499-501.

- [14] Fryberger S G. Dune forms and wind regime[C]//Mc-Kee E D: A study of global sand seas, USGS Professional Paper, 1979,1052:137-169.
- [15] Lettau K, Lettau H. Experimental and micrometeorological field studies of dune migration[C] // Lettau K, Lettau H. Exploring the world's Driest Climate. Madison: University of Wisconsin Press, 1977;110-147.
- [16] 董光荣,高尚玉,金炯,等.青海共和盆地土地沙漠化及 其防治[J].中国沙漠,1989,9(1):64-78.
- [17] 屈建军,井哲帆,张克存,等. HDPE 蜂巢式固沙障研制与 防沙效应试验研究[J].中国沙漠,2008,28(4):599-604.

[J]. 湖南工业大学学报,2011,25(5):55-61.

- [23] 何霞,夏建国,龚一鸿,等.灰色关联分析在粮食产量影 响因素分析中的应用:以川东地区为例[J].中国农学 通报,2012,28(9):150-153.
- [24] 陈祺琪,李君,梁保松.河南省粮食单产影响因素分析 及变化趋势预测[J].河南农业大学学报,2012,46(2): 219-222,236.
- [25] 安徽省统计局.安徽统计年鉴(1996-2012)[M].北京: 中国统计出版社,1996-2012.
- [26] 封志明,杨艳昭,张晶.中国基于人粮关系的土地资源 承载力研究:从分县到全国[J].自然资源学报,2008, 23(5):865-875.
- [27] 唐华俊,李哲敏.基于中国居民平衡膳食模式的人均粮 食需求量研究[J].中国农业科学 2012,45(11): 2315-2327.
- [28] 冉清红,岳云华,谢德体,等.中国耕地警戒值的测算与 讨论[J].资源科学,2007,29(3):158-164.

485-496.

- [11] 刘孝富,舒俭民,张林波.最小累积阻力模型在城市土 地生态适宜性评价中的应用:以厦门为例[J].生态学 报,2010,20(2):421-428.
- [12] 王富喜,毛爱华,李赫龙,等.基于熵值法的山东省城镇 化质量测度及空间差异分析[J].地理科学,2013,33 (11):1323-1329.
- [13] 符海月,李满春,陈振杰,等.基于关联矩阵的土地利用
 导向分区研究[J].中国人口・资源与环境,2011,21
 (11):99-105.