城市森林中火炬树的更新特性

李茗蕊1,莫训强2,崔爽1,李萍1

(1. 辽宁石油化工大学化学化工与环境学部, 辽宁抚顺 113001; 2. 天津师范大学地理与环境科学学院, 天津 300387)

摘 要:[目的]对天津市城市森林中火炬树的更新苗特性进行调查,为生物入侵后的生态恢复提供依据。 [方法]对天津市城市森林中火炬树的更新特性进行年际调查,并与已有的火炬树天然更新研究数据进行 对比,经5种聚集强度指数的表征,探究城市森林中火炬树更新苗的数量特征、径级结构和空间格局的年 际变化等。[结果]①火炬树更新苗全年密度在3~8 株/m²之间波动,1年生幼苗个体数占绝大多数,龄 级结构呈现典型金字塔型,种群属于增长型,更新能力旺盛;②处于低地径级和低高度级的火炬树更新苗 占总体的绝大多数;③火炬树更新苗呈现典型的聚集分布。[结论]城市森林内火炬树更新能力旺盛,入 侵性仍然显著,需采取有效措施进行监测与防治。

关键词:城市森林;火炬树;更新苗;空间格局;生物入侵

文献标识码:A 文章编号:1000-288X(2018)05-0109-06

中图分类号:Q14

文献参数:李茗蕊,莫训强,崔爽,等.城市森林中火炬树的更新特性[J].水土保持通报,2018,38(5):109-114. DOI:10.13961/j. cnki. stbctb. 2018. 05. 018. Li Mingrui, Mo Xunqiang, Cui Shuang, et al. Regeneration characteristics of *Rhus typhina* in urban forest[J]. Bulletin of Soil and Water Conservation, 2018,38(5):109-114.

Regeneration Characteristics of Rhus Typhina in Urban Forest

LI Mingrui¹, MO Xunqiang², CUI Shuang¹, LI Ping¹

(1. School of Environmental and Biological Engineering, Liaoning Shihua University, Fushun, Liaoning,

113001, China; 2. School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin 300387, China)

Abstract: [Objective] To survey the regeneration characteristics of *Rhus typhina* in urban forest in Tianjin City, in order to provide basis for ecological invasion and restoration of urban forest. [Methods] The regeneration characteristics of *R. typhina* in urban forests in Tianjin City were investigated, and compared with the existing natural regeneration data. Based on the characterization of five aggregative intensity indices, the quantitative characteristics, inter-annual variation of diameter structure and spatial pattern of regeneration seedlings of *R. typhina* in urban forest were studied. [Results] ① The annual density of regeneration seedlings fluctuated between $3 \sim 8$ plants/m², the one year old seedlings were majority, and the age structure showed a typical pyramid type. The population belonged to the growth type, and the regeneration ability was strong. ② The regeneration seedlings of *R. typhina* in urban forest R. typhina showed a typical aggregation distribution. [Conclusion] The regeneration ability of *R. typhina* in urban forests is strong, and the invasion is still significant. It is necessary to take effective measures to monitor and control it.

Keywords: urban forest; Rhus typhina; regeneration; spatial pattern; invasion

生物入侵是一个全球广泛关注的生态和经济问题,警惕生物入侵是保护生物多样性的首要前提。 目前,尽管存在争议,但主流学界仍然认同入侵对生物多样性有直接的危害,尤其是城市化进程的加速将 入侵的风险和负面效应进一步放大,这一点在城市森林中体现得尤为明显^[1-2],城市森林的生态入侵和 生态恢复研究具有重大意义。目前,对城市森林生态 入侵研究主要为预防性内容^[3-5],然而对于城市森林

收稿日期:2018-05-08 修回日期:2018-05-22

通讯作者:崔爽(1978—),女(汉族),吉林省长春市人,博士,教授,主要从事生态恢复、污染土壤修复等方面研究。E-mail:ccshuang@163.com。

资助项目:国家自然科学基金项目"微生物驱动土壤 BHMTPMPA-Cd 螯合物的地球化学过程及分子机制研究"(41773093); 辽宁省科学事 业公益研究基金"有机膦酸修复 Cd 污染土壤及其环境风险研究"(2015003017)

第一作者:李茗蕊(1994—),女(汉族),吉林省白山市人,硕士研究生,研究方向为城市森林。E-mail;CebroLi@163.com。

环境下已经存在的物种入侵的后续跟踪研究还很 匮乏。

漆树科盐肤木属的火炬树(Rhus typhina)原产 自北美洲,于1959年作为特种经济植物引入中国,其 适生区在 34°-42°N,106°-123°E 之间,且有向中国 北方移动的趋势^[6]。火炬树在退化生境的植被恢复、 园林及公路两旁绿化方面具有优良的特性,但也因超 强的萌蘗繁殖和适应能力而被列为外来风险物种之 一[7]。然而对其入侵性的讨论始终存在争议,许多学 者通过风险评估等方法判定火炬树具有中高入侵风 险,建议从中国的主要造林树种中删除此树^[8],但也 有不少研究表明,火炬树对自然、半自然森林生态系 统没有产生入侵危害^[9],或者在生长季后期才表现出 一定的竞争优势[10],因此评估火炬树的侵入潜力需 充分考虑环境因素和人为干预。目前暂无足够的针 对火炬树更新苗特性研究,尚不明确在城市森林的管 理模式下能否控制住火炬树的入侵态势。因此本文拟 采用样方调查法,选取代表性区域,对天津市城市森林 管理下火炬树的更新特性进行年际调查,并与已有的 火炬树天然更新研究数据进行对比[11],辅以聚集强度 指数计算、线性回归分析等方法,对其入侵性进行探 究,以期为城市森林生态入侵及生态恢复提供依据。

1 材料与方法

1.1 研究区概况

城市森林的范围同城市行政管辖范围不一致, 主要包括城区的绿化、近郊的风景游憩林、防护林 和远郊的森林公园、环城带等^[12]。本文研究区设 在天津师范大学主校区(117°6′44″—117°7′34″E, 39°3′6″—39°4′15″N)和天津市南翠屏公园(117°8′37″— 117°9′6″E,39°4′21″—39°4′43″N),分别代表城区绿化 和近郊风景游憩林。研究区属暖温带半湿润大陆性 气候,其特征是四季分明,春季干旱少雨,有时会有春 旱,夏季高温雨水集中,秋季短暂温度适中,冬季寒冷 干燥。本区植被以华北植物区系成分为主,混有东北 植物区系成分^[13]。其中南翠屏公园为天津市 1986 年规划建设的堆山造景工程,于采土深坑、芦苇地、弃 置地等之上以建筑垃圾为主要填充物堆积起来,是天 津市生态工程成功的典范。堆山山体占地约 12.1 hm²,堆山高约 52 m,环山水体约 8.5 hm²。

研究区内校园地势平坦,坡度普遍在15°以下,南 翠屏公园堆山部分坡度在0°~40°之间;两处城市森林 的修剪强度不同,校园内局部的小型修剪为主,修剪频 率较高,南翠屏公园内全园大型修剪频率在一年1~2 次。两处样地互为对照参考,每个样地各选出8个样 点进行调查,取样原则是避开大的林隙、在面积较大的分布区内取样、不取过于稀疏和高密度的。

1.2 研究方法

1.2.1 样方调查 调查时间为 2015 年,每个季度各 调查一次,取样对象为 1~3 年生的火炬树更新苗,采 用样方法对种群数量、地径、冠幅、高度等数据进行采 集,在天津师范大学主校区内和南翠屏公园小山上随 机各取 8 个 5 m×5 m 的样方,取样原则是避开大的 林隙,在面积较大的分布区内取样,不取过于稀疏和 高密度的。

1.2.2 数据处理 将更新苗地径、高度划分等级如 表 1 所示。

表1 研究区更新苗地径、高度等级

等级	地径/cm	高度/cm
1	0.1~0.5	$1\!\sim\!50$
2	0.6~1.0	$51 \sim 100$
3	1.1~1.5	$101 \sim \! 150$
4	1.6~2.0	$151 \sim 200$
5	2.1~2.5	$201 \sim 250$
6	2.6~3.0	$251 \sim 300$
7	3.1~3.5	$301 \sim 350$
8	3.6~4.0	$351 \sim 400$

对更新苗密度变化及数量结构变化进行分析,并 与张明如等^[11]学者研究的火炬树天然更新数据作对 照,将属于不同地径级和高度级的更新苗分别计数, 作频率分布图,同时用 SPSS 进行回归分析。

更新树种的空间格局动态将对森林未来的群落 结构、生物多样性等产生深远影响^[13],本文应用偏离 指数 C,负二项式参数 K,平均拥挤度 m^* ,聚块性指 数 C_x ,Morisita 指数 I_{Δ} 这 5 种指数对本研究中的火 炬树更新苗的空间分布格局进行描述。公式如下:

偏离指数
$$C = \frac{S^2}{X}$$
 (1)

C=1 表示种群分布呈随机分布,C>1 表示呈聚 集分布,C<1 表示呈均匀分布。t 为对偏离指数的检 验; X——样本平均数; S²——样本显方差。下同。

负二项式参数
$$K = \frac{\overline{X^2}}{S^2 - \overline{X}}$$
 (2)

K 值越小,聚集度越大,当*K* 值趋向于无穷大时,表示种群呈随机分布。 χ^2 为对负二项式参数的检验,若 $\chi^2 < \chi^2_{0.05}$,则分布符合泊松分布,若 $\chi^2 > \chi^2_{0.05}$,则符合集群分布。

平均拥挤度
$$m^* = \frac{S^2}{\overline{X}} + \overline{X} - 1$$
 (3)

式中:m---样本平均数。下同。

聚块指数
$$C_x = \frac{m^*}{m}$$
 (4)

若 $C_x = 1$,种群呈随机分布,若 $C_x > 1$,种群呈聚 集分布,若 $C_x < 1$,种群呈均匀分布。

Morisita 指数
$$I_{\Delta} = \frac{(\sum X_i^2 - \sum X_i)}{(\sum X_i)^2 - \sum X_i} \times n$$
 (5)

式中: X_i ——第*i*个样方中的样本数;*n*——样方数。 若 $I_{\Delta}=1$,种群呈随机分布,若 $I_{\Delta}>1$,种群呈聚集分 布,若 $I_{\Delta}<1$,种群呈均匀分布。

2 结果与分析

2.1 更新苗数量特征

计算不同季度更新苗平均密度,并做更新苗密度 的年度变化如表 2。

表 2 火炬树更新苗的密度变化 株/m² 冬 样方 春 夏 秋 5.41 7.46 校园 3.84 4.44 南翠屏 5.73 5.08 3.45 0.92

如表 2 所示,校园内夏季火炬树更新速率最快, 更新苗密度为 7.46 株/m²;秋季最慢,更新苗密度为 3.84 株/m²;南翠屏公园内火炬树的更新速率与校园 基本一致,更新苗密度在 3~4 株/m² 之间。冬季时, 南翠屏公园进行了一次大规模的修剪导致种群数量 急剧下降,更新苗密度为 0.92 株/m²。

校园样方 A,B,C 内全年火炬树种群一年生幼苗 个体数最多,且在上半年达到峰值,于下半年不同程 度的减少。校园样方 E,F,G,H 内 2 年生、3 年生幼 树一年内数量变化不明显(图 1)。由图 1 可知,校园 G,H 样方一年生幼苗基数小(小于 10 株),且年内并 无增长,变化率小;校园 E,F 样方 1 年生幼苗基数大 (大于 20 小于 40),年内变化率也较大。南翠屏公园 于 2015 年 11 月份前后对园内绿地进行了一次整体 修剪,除去样方 D 的地理位置偏僻,数据较清晰完整 以外,其余样方冬季数据均有严重缺失(图 2)。

图 1 校园内样方更新苗数量随季节变化

由图 1 校园样方数据可知,从龄级组成的角度来说,在城市森林内,火炬树种群属于典型的增长型;1 年生更新苗年内个体数变化(减少)率最大值为 66.7%,2年生为 54.5%,3年生为 14.6%,出现这种 现象,或与1年生幼苗和2年生幼树植株矮小,更易 受到自然和人为干扰等因素有关,但因火炬树是典型 的萌蘖繁殖植物,且结实量大、发芽率高,因此剩余 量大。

图 2 南翠屏更新苗数量随季节变化

由图 2 南翠屏公园样方数据可知,更新苗组成结构具有一致性,总体而言,1 年生幼苗数量最多,达到种群数量的 72.6%~97.1%(春),75.0%~97.7%(夏),62.2%~88.6%(秋),即火炬树种群的更新活力旺盛;除去 G,H 样方,其余样方内更新苗结构呈现典型金字塔型。

2.2 火炬树更新苗径级特征

如图 3 所示,校园内春秋两季更新苗地径处于 2 级(0.6~1.0 cm)的数量最多,分别达到种群数量的 54.2%和 65.4%,其次是处于 4 级地径级(1.6~2.0 cm)的数量最多,分别占总体的 15.7%和 11.7%;夏冬

两季更新苗处于2级(0.6~1.0 cm)、3级(1.1~1.5 cm)的数量最多,分别占种群数量的70.4%和78.7%。 总体而言,样方内更新苗地径较小,在0.6~2.0 cm 范围之内,偶有4.0 cm以上地径的更新苗。这一结 果也同火炬树天然更新研究结果保持一致^[20]。

图 4 显示,校园更新苗个体的高度峰值出现在 1, 2 级(1~100 cm)。偶有 400 cm 以上,更新苗最大高 度为有 585 cm。使用 SPSS 对地径和高度进行线性 回归分析,秋季数据拟合度最好, $R^2 = 0.978$,满足 F 检验,sig=0.000<0.005,说明具有显著性,即校园 秋季火炬树地径和高度级呈现明显正相关关系。

图 3 研究区火炬树更新苗地径级分布及年内变化

在对南翠屏公园全年的样方调查中,无高度级在 8级以上的更新苗个体。如图4,全年的高度级分布 总体趋势呈现一致性,1级高度级(0~50 cm)的个体 最多,2(51~100 cm),3(101~150 cm),4级(151~ 200 cm)逐级递减,5级及5级以上个体数稀少。以 上结果也同火炬树天然更新数据基本一致^[11]。对更 新苗地径级和高度级频数分布做回归分析,结果显示 拟合度较差,二者相关性不高。

图 4 研究区内火炬树更新苗高度级分布及年内变化

2.3 火炬树更新苗的空间分布

对 16 个样方数据综合分析的结果显示(见表 3), 全年 4 个季度各样方方差均值比率 C 均在 3.762~ 12.027 之间,大于 1;对偏离指数的结果进行检验,查 t 分布临界值表,根据本研究分析中出现不同的自由 度,得出 $t_{0.05}$ 的数值在 1.860~2.132 之间,本研究 t 值在 4.784~19.099,即 t 检验显著;负二项式参数 K 数值范围为 3.345~25.892,其 χ^2 对应值如表 3 所 示。经查卡方表,由不同的自由度,可得出 $\chi^2_{0.05}$ 的数 值在9.488~15.507 之间,明显的有 $\chi^2 > \chi^2_{0.05}$ 对本研 究结果恒成立,即 χ^2 检验极显著;聚块性指数 C_x 结 果均大于 1; Morisita 指数 I_{Δ} 的数值也都在 1.0 以 上,以上各指数所表征的结果一致,即火炬树更新苗 全年均表现为聚集分布。

然而,使用 SPSS 对 $m^* = m$ 的线性拟合结果为 $m^* = 0.956 m + 7.186$,其中 β 值为0.956,小于1,表明 呈均匀分布,与上述数据结果有悖,亦与同类研究结果 (小尺度上,植物更新苗一般呈现聚集分布)有矛盾。

样方类型	季节	С	t	Κ	χ^2	m^*	C_x	I_{Δ}	判别类型
校 园	春季	12.027	19.099	3.345	84.196	35.887	1.444	1.452	聚集
	夏季	7.408	11.099	6.217	51.878	38.838	1.198	1.203	聚集
	秋季	5.709	8.156	5.278	39.915	23.849	1.246	1.255	聚集
	冬季	3.762	4.784	7.879	84.375	20.762	1.153	1.627	聚集
南翠屏	春季	4.421	5.252	25.892	26.672	87.491	1.039	1.043	聚集
	夏季	5.116	5.820	17.984	24.984	73.116	1.060	1.061	聚集
	秋季	9.485	15.878	4.756	75.880	39.36	1.275	1.280	聚集
	冬季	5.692	5.747	4.890	22.788	21.942	1.272	1.291	聚集

表 3 火炬树的更新苗分布格局

注:C为方差均值比率; t为 t检验值; K为负二项式参数; χ^2 为对负二项式参数的检验值; m^* 为平均拥挤度; C_x 为聚块指数; I_Δ 为 morisita 指数。

3 讨论与结论

火炬树既是观赏绿化优良树种,也是水土保持的 优良树种,在护坡、尾矿及荒地造林等方面发挥着重 要作用^[14],对严重退化的生态环境有改善土壤物理性 质的效果^[15]。但生态入侵的现象在高强度的人为管 护下依然存在,树种入侵严重影响了城市森林的结构 和功能,大大增加了城市森林生态系统的脆弱性^[16]。 若在规划和管理中缺乏考虑和重视,将带来不必要的 生态成本及社会成本的损失。

本文从种群生态学的角度出发进行分析,研究区 内火炬树更新苗密度在 3~8 株/m² 之间,年龄组成 呈典型金字塔,处于低地径级和低高度级的更新苗占 绝对优势,空间分布格局表现为明显的聚集分布,更 新能力旺盛。类似研究在北华大学东校区展开,结果 显示仅仅2a时间,火炬树冠下植物盖度下降了1.25 ~1.45 倍, 而火炬树的种群数量增加了 1.35 倍, 加之 多数学生对火炬树分泌物有过敏反应[17]。在几乎没 有天然林的存在、现存森林多为人工林或次生林的北 京,火炬树作为北京入侵植物水平上的广布种对破碎 化程度较高的地区表现出很好的适应能力,对其他本 地树种及草本植物生存构成生态威胁^[18]。有学者提 醒,资源供应的时间异质性可能会对外来植物物种与 本地植物物种之间的相互作用及其潜在入侵性产生 深远影响,将火炬树引入非本土地区时仍需谨慎。随 着全球气候变化,降水模式可能会发生变化并导致供 水异质性增加,火炬树的优势主要在于其较大的生物 量和有效的叶片生理调节,这将可能导致田间种子的 更新以及对低矮灌木林和草本植物产生危害[19]。因 此在高度破碎化、人为干扰程度高的城市森林环境, 应当要加大对火炬树控制力度,进一步探究适合城市 森林的生态防治问题,这也与本文的结论相一致。

研究区很好地展示了城区的绿化、近郊的风景游 憩林中有无大面积修剪时火炬树的更新情况,填补了 相关研究领域的空白,结果表明有效监察并及时去除 更新苗,可大大降低入侵造成的危害,不足之处在于 并未在远郊的森林公园、环城带等开展相关调查研 究,所得结论仅能代表一部分城市森林中的情况。在 控制火炬树的具体措施方面,已有研究表明,环剥对 一年生火炬树克隆分株的抑制作用是暂时的^[20],这说 明平茬、修剪等处理方法可行性较差,因此控制火炬 树入侵风险可从植物生长激素抑制剂等方面入手;此 外,火炬树雌雄异株,可通过引种单性植株并控制根 糵繁殖的方式加以管理。

[参考文献]

- [1] Donaldson J E, Cang hui, Richardson D M, et al. Invasion trajectory of alien trees: the role of introduction pathway and planting history[J]. Global Change Biology, 2014,20(5):1527-1537.
- Lapointe M, Brisson J. A Comparison of invasive acer platanoides and native A. saccharum first-year seedlings: Growth, biomass distribution and the influence of ecological factors in a forest understory [J]. Forests, 2012, 3(4):190-206.
- [3] 鞠瑞亭.城市绿地外来物种风险分析体系构建及其在上 海世博会管理中的应用[J].生物多样性,2012,20(1): 16-27.
- [4] Müllerová J, Pergl J, Ryšek P. Remote sensing as a tool for monitoring plant invasions: Testing the effects of data resolution and image classification approach on the detection of a model plant species Heracleum mantegazzianum (giant hogweed) [J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 25 (1): 55-65.
- [5] Gavierpizarroa G I, Kuemmerle T, Hoyosc L E, et al. Monitoring the invasion of an exotic tree (*Ligustrum lucidum*) from 1983 to 2006 with Landsat TM/ETM⁺ satellite data and support vector machines in Córdoba, Argentina[J]. Remote Sensing of Environment, 2012, 122:134-145.
- [6] 杜中修.火炬树适生区预测及对自然生态系统的入侵风 险评估[D].山东 泰安:山东农业大学,2010.
- [7] 第七届中国生物多样性保护与利用高新技术国际论坛 论文集[C].北京:北京科学技术出版社,2010:112-120.
- [8] Wang Guangmei, Jiang Gaoming, Yu Shunli, et al. Invasion possibility and potential effects of *Rhus typhina* on Beijing Municipality[J]. Journal of Integrative Plant Biology, 2008,50(5):522-530.
- [9] 张川红,郑勇奇,李继磊,等.北京地区火炬树的萌蘖繁 殖扩散[J].生态学报,2005,25(5):978-985.
- [10] 卜庆梅,侯玉平,房洪坤,等.外来树种火炬树入侵的生 理生态特性:与同属本地种盐肤木的比较[J].林业科 学,2017,53(5):1-7.
- [11] 张明如,翟明普,王学勇,等.火炬树克隆植株生长和生物量特征的研究[J].林业科学,2004,40(3):39-45.
- [12] 李锋,刘旭升,王如松.城市森林研究进展与发展战略 [J].生态学杂志,2003,22(4):55-59.
- [13] 武吉华,张绅,江源,等. 植物地理学[M].4版,北京:高 等教育出版社,2004:60-61.
- [14] 陈佐忠,董保华,杨宗贵.北京地区火炬树的调查[J].林 业资源管理,2006(1):54-58.

(下转第121页)

- [14] 王绍强,周成虎,李克让,等.中国土壤有机碳库及空间 分布特征分析[J].地理学报,2000,55(5):533-544.
- [15] Stauch G. Geomorphological and palaeoclimate dynamics recorded by the formation of aeolian archives on the Tibetan Plateau[J]. Earth-Science Reviews, 2015,150 (2):393-408.
- [16] Nie Junsheng, Stevens T, Rittner M, et al. Loess Plateau storage of Northeastern Tibetan Plateauderived Yellow River sediment[J]. Science Foundation in China, 2016,6(1):8511.
- [17] Liu Xiangjun, Xiao Guoqiao, E Chongyi, et al. Accumulation and erosion of aeolian sediments in the northeastern Qinghai-Tibetan Plateau and implications for provenance to the Chinese Loess Plateau[J]. Journal of Asian Earth Sciences, 2017,135(7):166-174.
- [18] Kapp P, Pelletier, Rohrmann A, et al. Wind erosion in the Qaidam Basin, central Asia: Implications for tectonics, paleoclimate, and the source of the Loess Plateau [J]. Gsa Today, 2011,21(5):4-10.

- [19] E Chongyi, Sohbati R, Murray A, et al. Hebei loess section: A high resolution luminescence chronology based on both quartz and feldspar[J]. Boreas, 2018,47 (4):1170-1183.
- [20] 张玉芳,张俊牌.黄河源区全新世以来的古气候演化 [J].地球科学,1995,20(4):445-449.
- [21] Hetzel R, Küster Y, Krbetschek M, et al. Holocene loess sedimentation along the Qilian Shan(China): Significance for understanding the processes and timing of loess deposition [J]. Quaternary Science Reviews, 2006,25(1):114-125.
- [22] Kang Shugang, Wang Xulong, Lu Yanchou. Quartz OSL chronology and dust accumulation rate changes since the Last Glacial at Weinan on the southeastern Chinese Loess Plateau[J]. Boreas, 2013,42(4):815-829.
- [23] An Zhisheng, Kukla G, Porter S C, et al. Late quaternary dust flow on the chinese Loess Plateau [J]. Catena, 1991,18(2):125-132.

(上接第114页)

- [15] 樊巍,高喜荣,赵东,等.太行山退化山地火炬树群落物 种多样性与土壤特性变化的研究[J].河南农业大学学 报,2008,42(3):299-302.
- [16] Steenberg J W N, Millward A A, Nowak D J, et al. Forecasting Urban forest ecosystem structure, function, and vulnerability [J]. Environmental Management, 2016,59(3):373-392.
- [17] 谢振财,崔玉涛,杨军元,等.火炬树在北华大学东校区 生长状况调查[J].吉林林业科技,2015,44(4):17-18, 62.
- [18] 王苏铭,张楠,于琳倩,等.北京地区外来入侵植物分布 特征及其影响因素[J].生态学报,2012,32(15):4618-4629.
- [19] Du Ning, Tan Xiangfeng, Li Qiang, et al. Dominance of an alien shrub *Rhus typhina* over a native shrub *Vitex negundo* var. *heterophylla* under variable water supply patterns[J]. Plos One, 2017,12(4):1-19.
- [20] 吴刚,张明如,李小俊,等.环剥对火炬树克隆分株光合 特性及生长状况的影响[J].内蒙古农业大学学报:自 然科学版,2012,33(1):27-32.