黄腐酸吸附土壤 Cr6+的模型研究

朱启红,夏红霞

(重庆文理学院,重庆 永川,402168)

摘 要: 在单因素实验的基础上,针对黄腐酸(FA)吸附土壤中的 Cr^{6+} 的研究,采用了二次回归正交旋转组合设计对其实验条件进行了优化,并建立了土壤 Cr^{6+} 潜在去除率(y)与 FA 浓度(x_1)、溶液 pH 值(x_2)、反应时间(x_3)和反应温度(x_4)这 4 个因素间的正交回归模型。从模型推知,当在 FA 浓度为 2.11 g/L,溶液 pH 值为 5.65,反应时间为 8.8 h 和反应温度为 23.8 $^{\circ}$ 时,土壤 Cr^{6+} 潜在去除率最大,达78.27 $^{\circ}$ 、验证结果表明,实验结果与模型结果较为吻合。

关键词: Cr⁶⁺; 黄腐酸(FA); 潜在去除率; 正交旋转组合设计

文献标识码: A 文章编号: 1000-288X(2011)02-0133-05

中图分类号: X53

Adsorption Model of Soil Cr⁶⁺ by Fulvic Acid

ZHU Qi-hong, XIA Hong-xia

(Chongqing University of Arts and Sciences, Yongchuan, Chongqing 402168, China)

Abstract: Based on single factor experiments, the adsorption of Cr^{6+} on fulvic acid (FA) from the soil was optimized by a combination design of quadratic regression and orthogonal rotation. The quadratic orthogonal regression model of potential removal rate of $\operatorname{Cr}^{6+}(y)$ as function of four variables including FA density (x_1) , $\operatorname{pH}(x_2)$, reaction time (x_3) and reaction temperature (x_4) was established. As implied by the model, the rate(y) reaches its peak of 78. 27% with FA density of 2. 11 g/L, pH value of 5. 65, reaction time of 8. 8 h and reaction temperature of 23. 8 °C. This model prediction was also consistently confirmed by experiment results.

Keywords: Cr^{6+} ; fulvic acid(FA); potential removal rate; orthogonal rotation combination design

铬(Cr)是环境污染中的五毒之一[1],在环境中主要以3价Cr³+和6价Cr⁶+形式存在[2]。Cr³+易被土壤吸附固定,因而毒性较小;Cr⁶+则毒性强,对植物易造成明显的毒害作用[3],并且易在人体内蓄积,当在人体内部积累到一定量时便会致病,甚至引发癌症[4]。因此,土壤重金属Cr⁶+污染治理已刻不容缓。黄腐酸(FA),又名富里酸[5],是自然界中广泛存在的一种可变电荷有机胶体[6],其分子量较小,功能团紧密,有较强的生理活性,能与环境中的金属离子发生络合作用,从而对重金属元素在环境中的迁移、转化及其生物有效性起着十分重要的调控作用。近年来,许多学者开展了河、湖、煤炭中腐殖质及其中黄腐酸与各种金属如Cu²+,Hg²+,Fe²+等相互作用的研究[7-8],但未曾见到有关利用黄腐酸吸附土壤Cr⁶+模型研究的相关报道。

本研究以黄腐酸为对象,研究黄腐酸吸附土壤 Cr⁶⁺的可行性,旨在为黄腐酸吸附土壤中 Cr⁶⁺ 提供 理论依据,减少 Cr^{6+} 对生物的毒害。二次正交旋转组合设计是正交回归试验设计的一种^[9],它既能分析各处理因子的影响,又能建立定量的数学模型,属更高级的试验设计技术^[10],可有效地克服二次回归正交设计的无旋转性,具有能根据预测值直接寻求最优区域的优点^[11]。本研究在单因素实验的基础上,采用二次回归正交旋转设计优化实验条件,得到最佳实验条件,从而使土壤 Cr^{6+} 潜在去除率显著提高。

1 材料与方法

1.1 供试材料

供试土壤取自重庆市永川区黄瓜山茶叶基地地表 0—15 cm 土层,其基本理化性质为:pH 值 4.6,总氟含量 554.67 mg/kg,有机质含量 4.25%,CEC 为 20.32 cmol/kg, Cr^{6+} 含量为 50.3 mg/kg。土壤经风干磨细过 2 mm 筛,添加浓度为 20.00 mg/L 的 K_2CrO_4 溶液 20.00 ml,充分混合后老化 5 周,做为

模拟 Cr⁶⁺污染的土壤。黄腐酸购自上海某生物科技有限公司。

1.2 实验方法

称取一定量已处理的土壤置于 250 ml 三角瓶中,加入适量的 FA 溶液,调节实验条件,在恒温水浴振荡器中振荡一定时间后静置、过滤,用原子吸收分光光度法测定滤液中的 Cr^{6+} ,通过计算即可得出 FA 对土壤 Cr^{6+} 的潜在去除率。

1.2.1 单因素实验设计 实验中主要分析 FA 浓度,pH 值,反应温度和反应时间等因素对试验结果的影响。实验设计如表 1-2 所示。每一实验均重复 3 次,取其平均值。

表 1	甲因素头验设计

影响因素			水平		
FA 浓度/(g・L ⁻¹	0.91	1.82	2.73	3.64	4.55
pH 值	3	5	7	9	11
反应时间/h	2	4	6	8	10
反应温度/℃	15	20	25	30	35

1. 2. 2 二次回归正交旋转组合设计 针对传统单因素实验设计具有的明显不足,在此基础上采用二次回归正交旋转组合 4(1/2) 设计对 FA 吸附土壤中 Cr^{6+} 的主要影响因素进行了优化。实验设计时取 FA 浓度 (x_1) 、溶液 pH 值 (x_2) 、反应时间 (x_3) 和反应温度 (x_4) 作为 4 个分析因素,每个因素选取 5 个水平(详见表 2)。

表 2 正交实验因素水平编码

· · · · · · · · · · · · · · · · · · ·			水 平		
又里有彻	1.682	1	0	-1	-1.682
FA 浓度/(g・L ⁻	1) 4.26	3.64	2.73	1.82	1.20
pH 值	8.40	7.00	5.00	3.00	1.60
反应时间/h	11.04	10.00	8.00	6.00	4.60
反应温度/℃	33.04	30.00	25.00	20.00	16.60

1.3 测定项目与方法

土壤中 Cr^{6+} 采用原子吸收分光光度法测定,pH 值采用电极法测定,有机质 (OM) 含量采用重铬酸钾容量法测定,阳离子交换量 (CEC) 采用 NH_4OAc 交换法测定。实验数据采用 DPS 统计软件分析。

2 FA 吸附土壤 Cr⁶⁺机理

黄腐酸是腐殖酸中的一种,是自然界中广泛存在的一种有机大分子物质[12]。其分子量和结构目前尚未确定,但从实验中得知黄腐酸分子中含有较多的活性官能团——总酸基、羧基等基团,除了可进行离子

互换反应外,还可与部分具有空轨道的金属离子形成配位键^[8,13-15],故对环境中金属离子具有强烈结合能力,从而对重金属元素在环境中的迁移、转化和生物有效性起着十分重要的调控作用^[16]。

3 结果与分析

3.1 单因素实验

3.1.1 FA 浓度对 Cr⁶⁺ 去除率的影响 由实验可 知,加入黄腐酸后土壤 Cr⁶⁺的去除率明显提高,由此 说明黄腐酸对土壤中的 Cr⁶⁺ 具有较强的吸附能力, 能将 Cr6+ 与土壤进行分离。由图 1 可见,FA 浓度过 高或过低,都对土壤 Cr6+ 的去除不利。在 FA 投加 量为 $0.91\sim2.73~g/L$ 范围内,土壤 Cr^{6+} 的潜在去除 率随 FA 浓度的增加而增加。这是因为在 FA 低投 加量时,黄腐酸不易发生聚集[17],FA 与 Cr6+生成的 FA-Cr 络合物浓度过小,絮凝不充分,故土壤 Cr6+ 潜在去除率较低。随着 FA 浓度的增加,FA 与 Cr6+ 的络合能力增强,从而提高了对土壤 Cr6+ 的去除效 果。当 FA 浓度为 2.73 g/L 时, Cr^{6+} 潜在去除率达 到最大,说明此时黄腐酸对 Cr⁶⁺ 的吸附达到平衡。 在 FA 投加量为 2.73 \sim 4.54 g/L范围内, Cr⁶⁺潜在 去除率随 FA 浓度的增加而略有降低,这与翟莹雪等 人[17]的研究结果一致。这是由于黄腐酸浓度越大, 单位黄腐酸与 Cr⁶⁺ 离子结合的机会就越少,即 FA 过量而 Cr^{6+} 的量不足,从而导至絮凝不充分。因此, 当 FA 浓度大于吸附平衡的投加量时,土壤 Cr6+ 潜 在去除率就会降低。

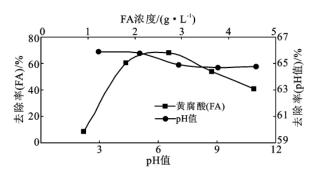


图 1 FA浓度和 pH 值对去除率的影响

3.1.2 pH 值对 Cr^{6+} 去除率的影响 董春妮等 [18-21] 的研究发现,随 pH 值的增大,黄腐酸对金属离子的吸附力逐步增大,当达到某一极值后吸附率增加不明显但也不会下降;而本实验中随着 pH 值增大土壤 Cr^{6+} 潜在去除率却逐渐降低。这可能是因为在酸性条件下,黄腐酸表面吸附了更多的 H^+ 离子,使 H^+ 占据了重金属离子的吸附位,表面负电荷减少,极大降低了黄腐酸与土壤 Cr^{6+} 的结合能力;而 pH 值增大

导致水解作用的产生—— Cr^{6+} 与 OH^- 络合,从而降低了 Cr^{6+} 的浓度,使吸附向减弱的方向发展。但考虑到实际情况,土壤在 pH 值为 3 的酸度下,植物是不可能存活的,所以选 pH 值为 5 做最佳实验条件(图 1)。

3.1.3 FA 震荡时间对 Cr^{6+} 去除率的影响 由图 2 可知,FA 对土壤 Cr^{6+} 的去除率随时间的增大而增大,在吸附时间大于 8 h 以后,吸附量基本稳定,即达到吸附平衡。在吸附初期,随着吸附时间的增长,FA 对 Cr^{6+} 的吸附速度大,这是由于 Cr^{6+} 的吸附主要发生在 FA 的分子表面和孔内表面;而在吸附后期,吸附受扩散控制,则主要发生在深孔内界面,故吸附速度减缓。但也有研究[11] 发现时间越长效果越好。这是由于 FA 与水形成亲液胶体,分子中有羧基、酚羟基等亲水基团,从而使 FA 分子稳定分散于水中[22]。因此,FA 与 Cr^{6+} 离子在短时间内不能完全络合;而当时间较长时,胶体内部的亲水基团可通过逐渐平衡而达到完全络合,故处理效果越好。但考虑到成本效率关系,选择振荡时间 8 h 为最佳反应时间。

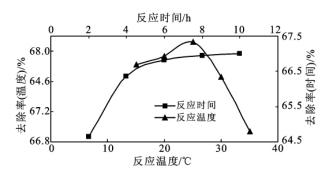


图 2 反应时间和反应温度对去除率的影响

3.1.4 反应温度对 Cr^{6+} 去除率的影响 由图 2 可知,反应温度由 15 ℃上升到 25 ℃,土壤 Cr^{6+} 潜在去除率有所增加,但增加的幅度不大,这说明 FA 对土壤 Cr^{6+} 的吸附量受环境温度的影响不显著。当温度升高时,土壤 Cr^{6+} 的扩散速度提高,其活度也相应增大,土壤 Cr^{6+} 较易进入 FA 的表面结构中,增加 FA 与 Cr^{6+} 的结合几率。温度由 25 ℃上升到 35 ℃时,土壤 Cr^{6+} 潜在去除率却有所降低,这可能是因为温度过高,黄腐酸的热稳定性变差,在高温下脱羧、脱羟基、裂解等,致使其变性,失去原有的活性,故黄腐酸对土壤 Cr^{6+} 的络合能力降低,反应减慢。

3.2 正交旋转回归法确定最佳实验条件

3.2.1 数学模型 采用 DPS 数据处理系统用二次 回归正交旋转组合实验统计方法对实验数据进行拟合,得到的回归方程如下:

 $y = 65.78799 - 5.96605x_1 + 1.82587x_2 +$

2. $662\ 05x_3 + 0.958\ 09x_4 - 6.297\ 39x_1^2 - 1.579\ 22x_2^2$ -1. $573\ 91x_3^2 - 4.469\ 51x_4^2 - 0.746\ 25x_1x_2 + 1.210\ 00x_1x_3 + 2.830\ 00x_1x_4 + 2.830\ 00x_2x_3 + 1.210\ 00x_2x_4 - 0.746\ 25x_3x_4$ (1)

3.2.2 二次回归模型的显著性检验 为检验回归方程的有效性,按 F_1 = 失拟均方/误差均方, F_2 = 回归均方/剥余均方, F_3 = 回归均方/误差均方的程序进行检验。由表 3 可知:失拟项 $F_{0.01}(2,6)$ = 10.9 > F_1 = 7.93 > $F_{0.05}(2,6)$ = 5.14,达到了 0.05 水平上的显著,但在 α = 0.01 水平不显著,有可能存在失拟因子对实验结果产生影响,这种失拟可能来自因子间的互相作用。 F_2 在 0.01 水平上极显著($(F_{0.01}(14,8)$ = 5.56 < F_2 = 6.36),这表明方程与实验数据的配合是可行的,可用来建立其模型。并且通过对 F_3 的检验, F_3 = 17.36 > $F_{0.01}$ = 7.60 (14,6) 达到极显著水平,故认为仅就各实验因子而言,方程回归结果是可靠的。

表 3 实验结果方差分析

变异来源	平方和	自由度	均方	比值 F	⊅值
$\overline{x_1}$	486.098	1	486.098	21.906	0.0016
x_2	45.529	1	45.529	2.053	0.189 9
x_3	96.779	1	96.779	4.361	0.070 2
x_4	12.536	1	12.536	0.565	0.473 8
x_2^2	619.754	1	619.754	27.929	0.000 7
x_2^2	35.492	1	35.493	1.599	0.241 6
x_3^2	35.239	1	35.239	1.588	0.243 1
x_4^2	308.294	1	308.294	13.893	0.005 8
$x_1 x_2$	8.910	1	8.910	0.402	0.544 0
$x_1 x_3$	23.426	1	23.426	1.056	0.334 3
$x_1 x_4$	128.142	1	128.142	5.775	0.043 0
$x_2 x_3$	128.142	1	128.142	5.775	0.043 0
$x_2 x_4$	23.426	1	23.426	1.056	0.334 3
$x_3 x_4$	8.910	1	8.910	0.405	0.544 0
回归	1 974.431	14	141.031	$F_2 = 6.356$	0.001 4
剩余	177.522	8	22.190		
失拟	128.803	2	64.401	$F_1 = 7.931$	0.012 6
误差	48.719	6	8.120		
_ 总和	2 151.954	22			

注:*表示在 0.05 水平显著,**表示在 0.01 水平显著。

3.2.3 重建二次回归模型 根据表 3,在 α = 0.10 显著水平上剔除不显著项后,简化后的回归方程为: y = $65.78799-5.96605x_1+2.66205x_3-6.29739$ $x_1^2-4.46951x_4^2+2.83000x_1x_4+2.83000x_2x_3$ (2)

土壤中 Cr^{6+} 的去除率与 FA 的 pH 值、FA 的浓度、反应温度以及反应时间的相关系数 $R^2=$ 回归平方和/总平方和=0.9175,表明该数学模型 4 个因素对产量的影响占 91.75%,而其它因素的影响和误差占 8.25%。

3.2.4 效应分析

(1) 主要因素效应分析

用"降维法"将任意 3 个因素固定在零水平,得到 另一个因素与去除率的效应方程为:

$$y=65.787 99-5.966 05x_1-6.297 39x_1^2$$
 (3)
 $y=65.787 99+1.825 87x_2-1.579 22x_2^2$ (4)

$$y = 65.78799 + 2.66205x_3 - 1.57391x_3^2$$
 (5)

$$y = 65.78799 + 0.95809x_4 - 4.46951x_4^2$$
 (6)

根据回归系数(绝对值)可知 4 个因素对土壤中 Cr^{6+} 的去除率的影响顺序为:FA 浓度 $(x_1) \geqslant$ 反应温 度 $(x_4) \geqslant pH$ 值 $(x_2) \geqslant$ 反应时间 (x_3) 。

由主效方程可作出各因素与得率的关系图(图 3)。由图 3 可知,在 $-1.682 \le x_i \le 1.682$ 的范围内, pH 值 (x_2) 、反应时间 (x_3) 与土壤中 Cr^{6+} 去除率的关 系接近线性,表明该因素影响显著,增加反应温度利于 土壤中 Cr^{6+} 的去除; FA 浓度 (x_1) 、反应温度 (x_4) 对土 壤中应 Cr6+ 去除率影响呈开口向下的抛物线关系,表 明上述因素对土壤 Cr6+ 的去除存在一个合理范围:在 低水平到0水平时,土壤中 Cr^{6+} 的去除率上升,超过0水平后,土壤中 Cr⁶⁺的去除率显著下降。

3.2.5 实验因子间互作效应分析 从回归系数的显 著性检验结果可以看出,FA 浓度 (x_1) ,pH 值 (x_2) ,

反应时间 (x_3) 和反应温度 (x_4) 的互作效应对土壤中 Cr6+的去除影响明显,FA 浓度与溶液 pH 值之间存 在协同作用,反应时间与反应温度之间也存在协同作 用,其它因素之间也是存在协同作用。

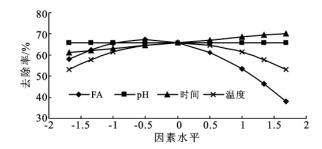


图 3 实验因子的主效应分析

3.2.6 实验条件优化 根据已建立的数学模型在 $-1.682 \leqslant x_i \leqslant 1.682 (i=1,2,3,4)$ 范围内,每个因素 取 5 个水平(± 1.682 , ± 1 和 0),对 $5^4 = 625$ 个方案 进行统计寻优,在实验范围内可得黄腐酸对土壤Cr6+ 的去除率最高值为 72.27%,此时各因素取值为: x_1 $=0,x_2=1.682,x_3=1.682,x_4=0$ 。 现以二次回归正 交组合设计实验的均值 57.52% 为临界值,求得土壤 Cr^{6+} 去除率大于临界值的方案共 202,各变量取值的 频率分布见表 4。

	S	c_1	а	c_2	
囚系小平	ンか 米九		ンカ 米h	- 15	マカ 米カ

因素水平 -	x_1		x_2		x_3		x_4	
囚系小十 一	次数	频率	次数	频率	次数	频率	次数	频率
1.682	41	0.203 0	37	0.183 2	21	0.1040	25	0.1238
1	78	0.386 1	43	0.212 9	28	0.138 6	60	0.297 0
0	73	0.3614	39	0.193 1	45	0.2228	68	0.3366
-1	10	0.049 5	40	0.198 0	49	0.242 6	42	0.207 9
-1.682	0	0.000 0	43	0.212 9	59	0.292 1	7	0.034 7
X	-0.6780		0.035 0		0.420 0		-0.2390	
S_T	0.052 0		0.087 0		0.081 0		0.067 0	
95%的置信区间	(−0.78	0, -0.576)	(-0.576) $(-0.135, 0.206)$		(0.262,0.579)		(-0.370, -0.108)	

表 4 优化实验方案中 x; 取值频率分布

由表 4 可以看出,当 $x_1 = -0.780 \sim -0.576$, $x_2 = -0.780 \sim -0.576$ $=-0.135\sim0.206, x_3=0.262\sim0.579, x_4=-0.370$ \sim - 0. 108 时,相应的实验实际值为: FA 浓度 2.020 2~2.205 8 g/L,溶液 pH 值 4.73~6.59,反 应时间 8. $524 \sim 9$. 158 h 和反应温度 23. $15 \sim$ 24.46 °C.

取优化后实验条件的平均值方案, $x_1 = 2.11, x_2$ $=5.65, x_3 = 8.8, x_4 = 23.8,$ 即最优实验条件为:FA 浓度为 2.11 g/L,溶液 pH 值 5.65,反应时间为8.8 h 和反应温度 23.8 ℃。在此条件下,根据数学模型推 知黄腐酸对土壤 Cr⁶⁺ 的去除率可达78.27%,为了确 认这一实验结果,按得出的条件重复3次验证实验,

结果表明, Cr^{6+} 的去除率都在 78.1% 以上,进一步证 实了分析的可靠性。

结论

(1) 单因素实验表明,FA 可用于去除土壤中的 Cr⁶⁺,FA 浓度、溶液 pH 值、反应时间、反应温度等因 素对土壤 Cr⁶⁺ 的去除有一定的影响。在 FA 浓度为 2.73 g/L,溶液 pH 值 5,反应时间为 8 h 和反应温度 25 ℃时,土壤 Cr⁶⁺的去除率达到最佳(68.2%)。

(2) 在单因素实验基础上,运用正交旋转组合设 计的理论与方法,通过 DPS 数据处理数据确定了最 佳实验条件:FA 浓度为 2.11 g/L,溶液 pH 值 5.65,

反应时间为 8.8 h 和反应温度 23.8 $^{\circ}$,在此条件下土壤 $^{\circ}$ +去除率达 78.27%。

(3) 在模型得出的最佳实验条件下,通过实验验证得出土壤 Cr^{6+} 去除率为 78.1%,与模型最佳值基本一致,说明此模型是可靠的。

[参考文献]

- [1] 尹晋,马小东,孙红文. 电动修复不同形态铭污染土壤的研究[J]. 环境工程学报,2008,5(2):684-689.
- [2] 杨德,吕金印,程永安,等. 铬在南瓜中的亚细胞分布及 对某些酶活性的影响[J]. 农业环境科学学报,2007,26 (4):1352-1355.
- [3] 黄辉,童雷,苗芃,等. 铬污染地区芦苇(*Phragmites aust-ralis* L.)生理特征分析[J]. 农业环境科学学报,2007,26 (4):1273-1276.
- [4] 郑爱珍. 重金属 Cr⁶⁺ 污染对辣椒幼苗生理生化特性的影响[J]. 农业环境科学学报,2007,26(4):1343-1346.
- [5] 吴宏海,卢燕莉,杜娟,等. 红壤中矿物表面对腐殖质吸附萘的影响[J]. 岩石矿物学杂志,2007,26(6):539-545
- [6] 周少丽,贺燕. 黄腐酸对铁吸附行为的研究[J]. 沈阳理 工大学学报,2007,26(6):70-73.
- [7] 朱丽珺,张金池,宰德欣,等. 腐殖质对 Cu^{2+} 和 Pb^{2+} 的 吸附特性[J]. 南京林业大学学报:自然科学版,2007,31(4):73-77.
- [8] 余贵芬,青长乐,牟树森,等. 汞在腐殖酸上的吸附与解吸特征[J]. 环境科学学报, 2001, 21(5): 601-606.
- [9] 张晓娜,周素梅,王世平.二次回归正交旋转组合设计对 麦麸中阿拉伯木聚糖酶解工艺的优化[J]. 食品科学, 2008,29(1):141-145.
- [10] 唐启义,冯光明. 实用统计分析及其计算机处理平台

- 「M]. 北京:中国农业出版社,1997:77-91.
- [11] 徐位力,罗焕亮,范恩友,等.二次正交旋转组合设计对 马占相思组培增殖培养基的优化[J].广西植物,2002, 22(6):517-520.
- [12] 周少丽,贺燕. 黄腐酸对铁吸附行为的研究[J]. 沈阳理 工大学学报,2007,26(6);71-74.
- [13] 田丹碧,田定一. 黄腐酸的萃取和性质研究[J]. 资源开发与市场,2007,23(10):872-874.
- [14] 王晶,张旭东,李彬,等. 腐殖酸对土壤中 Cd 形态的影响及利用研究[J]. 土壤通报,2002,33(3):185-187.
- [15] 董文明,杜金洲,陶祖贻,等. 巩县风化煤黄腐酸与Co(Ⅱ)的配合物稳定常数的测定[J]. 核化学和放射化学,2000,22(1);8-12.
- [16] Alvarez-Puebla R A, Valenzuela-Calahorro C, Garrido J J, et al. Theoretical study on fulvic acid structure, conformation and aggregation: A molecular modelling approach[J]. Science of the Total Environment, 2007, 4:39-47.
- [17] 翟莹雪,魏世强.土壤富里酸对镉的吸附特征与影响因素的研究[J].农业环境科学学报,2006,25(5):1208-1211.
- [18] 李波,魏世强,青长乐.腐殖酸对土壤吸持汞的影响研究[J].环境科学与技术,2004,27(2):16-18.
- [19] 吴宝华. 硫酸铝絮凝黄腐酸条件的研究[J]. 化学工程 师,2004(7):54-55.
- [20] 董春妮,陈阵宁. 铝离子对黄腐酸絮凝效果[J]. 腐植酸,2004(6):28-31.
- [21] 周少丽,贺燕. 黄腐酸对铁吸附行为的研究[J]. 沈阳理工大学学报,2007,26(6);39-46.
- [22] 吴宝华,丁为民. 硫酸铝絮凝排除生化黄腐酸中有机杂质效果的研究[J]. 黑龙江省教育学报,2002(6):26-28.