基于高光谱影像分解的土壤含水量反演技术
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

安徽高等学校省级自然科学研究项目“安徽省生态环境质量定量评价遥感信息模型研究”(KJ2013B189);滁州学院校级科研启动基金项目“江淮分水岭地区植被盖度遥感信息提取技术研究”(2012qd18)


Inversion Technology of Soil Water Content Based on Hyperspectral Image Unmixing
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    植被和土壤常同时存在于影像像元中,土壤含水量监测不可避免地会受植被光谱影响。因此,剔除植被光谱干扰显得尤为重要。采用基于光谱匹配的分解算法对Hyperion高光谱数据进行分解,剔除植被光谱的干扰,同时对土壤贡献的光谱信息进行一阶微分和包络线去除变换,选取敏感波段,建立土壤含水量反演模型。结果表明:以波段X661,× 1019和X2067的土壤包络线去除光谱为自变量建立的模型最佳,预测R2值为0.85;未剔除植被光谱时,以波段X541,X979和X1632的一阶微分光谱为自变量建立的模型最佳,预测R2值仅为0.36。通过高光谱影像分解剔除植被光谱干扰估测土壤含水量的方法是可行的,可为今后遥感估测土壤含水量的研究提供参考。

    Abstract:

    Vegetation and soil are usually both in one pixel and soil moisture content monitoring is inevitably influenced by vegetation spectrum,so it is important to eliminate the interference of vegetation spectrum.Hyperion hyperspectral data were decomposed by decomposition algorithm based on the spectrum matching to eliminate vegetation spectrum,and the first order differential and continuum removal transformation were used to dispose soil spectrum information. Then the sensitive bands were selected to establish the inversion model of soil moisture content.Results show that the best model was established by the bands X661,X1019 and X2067 of the soil continuum-removal spectrum,and the forecasted Rz value was 0.85.When the vegetation spectrum is not eliminated,the best model was established by the bands X541,X979 and X1632 of the soil first order differential spectrum,and the forecasted Rz value was only 0.36.The method of forecasting soil water content by decomposing hyperspectral data to eliminate the vegetation spectrum is feasible and it can provide reference for the research on soil water content forecast by remote sensing.

    参考文献
    相似文献
    引证文献
引用本文

吴见,刘民士,李伟涛.基于高光谱影像分解的土壤含水量反演技术[J].水土保持通报,2013,(5):156-160

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2012-09-03
  • 最后修改日期:2012-11-29
  • 录用日期:
  • 在线发布日期: 2014-11-11
  • 出版日期: