基于数量化理论和BP神经网络的滑坡体积预测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

河南省科技创新人才计划“膨胀土边坡安全性研究”(154100510006);河南省重点科技攻关项目“南水北调中线膨胀土滑坡发生机理与信息系统构建”(152102210111);新疆维吾尔自治区科技援疆(201491105);新疆自治区高层次人才引进工程


Prediction of Landslide Volume Based on Quantitative Theory and BP Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    [目的] 探讨数量化理论Ⅲ和BP神经网络在滑坡中综合应用的效果,为滑坡体积的预测提供一种新的思路。[方法] 采用数量化理论Ⅲ分析滑坡体积的影响因素及其耦合作用强度,并结合其分析结果,将次要因素和强耦合程度样本进行剔除,再依据其剔除的不同阶段构建3种滑坡体积的BP神经网络预测模型。[结果] 滑坡体积的主要影响因素是坡角、坡向、植被覆盖率和坡高,次要影响因素是岩层倾角、斜坡高程和岩层倾向因素,且在不同样本中,体积影响因素之间的耦合程度具有一定的差异。[结论] 该预测方法可行,对次要因素和强耦合程度样本的剔除,提高了预测精度。

    Abstract:

    [Objective] The objective of this study is to explore the effect of the comprehensive application of the third theory of quantification and BP neural network in the landslide, in order to provide a new method for the prediction of landslide volume.[Methods] The influence factors of landslide volume and its coupling strength were analyzed by the third theory of quantitatification. Based on the analysis results, the secondary factors and strong coupling degree samples were removed, and then the BP neural network prediction models of 3 different kinds of landslide volume was built according to different stages of the elimination.[Results] The main influencing factors of landslide volume were slope angle, slope, vegetation coverage rate and slope high, while the secondary influence factors were the dip angle, elevation and slope rock orientation. And in different samples, the degree of coupling between the volume influencing factors was difference.[Conclusion] The prediction method used in the present study is feasible, and the prediction accuracy can be improved by eliminating the secondary factors and the strong coupling degree samples.

    参考文献
    相似文献
    引证文献
引用本文

黄志全,孟令超,黄向春,王伟.基于数量化理论和BP神经网络的滑坡体积预测[J].水土保持通报,2016,36(5):207-213

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-01-25
  • 最后修改日期:2016-02-25
  • 录用日期:
  • 在线发布日期: 2016-11-22
  • 出版日期: