淮北矿区地表拉张裂隙区耕地土壤主要养分特征
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

S152.9, X825

基金项目:

国家自然科学基金项目“动态沉陷区氮素在积水区—包气带中迁移转化机制研究”(41402309);淮北矿区开采沉陷地拉张裂隙控制(淮北矿业集团2019年项目);临涣矿区沉陷水域水资源优化配置(淮矿技合字2021-14);2019年淮南市科技计划项目。


Main Soil Nutrient Characteristics of Cultivated Land in Surface Tension Fracture Area of Huaibei Mining Area
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    [目的] 分析采煤沉陷导致的地表拉张裂隙对耕地土壤质量的影响,评估采煤沉陷前后土壤养分变化,为沉陷区土地采前—采中治理提供理论基础。[方法] 以淮北矿区孙疃矿地表拉张裂隙区为研究区域,分别在沉陷前(2019年6月)、沉陷后(2019年12月、2020年7月)采集样品,沉陷前布设5个采样点(T1—T5),沉陷后选择两条典型纵向拉张裂隙,由沉陷斜坡坡顶到坡底将沉陷区划分为A,B,C 3个分区,在裂隙两侧设置13个采样点,每个采样点沿深度方向每隔20 cm采集一个土壤样品,分别测试含水率、有机质、速效钾、速效磷、全氮和全磷含量6个指标。[结果] 拉张裂隙区两次采样土壤含水率、有机质、速效钾、全磷含量存在显著差异(p<0.01),速效磷和全氮差异性不显著(p>0.05);通过主成分分析得到研究区第一、二主成分分别为有机质、全氮、全磷(受负面影响)和含水率、速效钾(受到正面影响);根据综合养分评价—主成分分析法发现裂隙区综合养分与对照点相比总体下降,但拉张裂隙区内养分从沉陷斜坡坡顶至坡底逐渐上升。[结论] 地表拉张裂隙在采煤沉陷区分布广泛,是造成沉陷区耕地质量下降的主要原因。

    Abstract:

    [Objective] The influences of surface tension fractures caused by coal mining subsidence on the soil quality of cultivated land were analyzed, and the changes in soil nutrients before and after coal mining subsidence were quantified, in order to provide a theoretical basis for the pre-mining and in-mining management of land in the subsidence area. [Methods] The study was conducted in the surface tension fracture area of the Suntuan Mine in the Huaibei mining area. Samples were collected before subsidence (April 2019), and after sibsidence (December 2019, July 2020). Five sampling points were randomly located before subsidence. Two typical longitudinal tension fractures were selected after subsidence, and the subsidence area was divided into three zones from the top to the bottom of the subsidence slope. Thirteen sampling points were located on both sides of each fracture. At each sampling point, one soil sample was collected every 20 cm of soil depth. Sample collection was completed in December 2019 and July 2020. Six soil indicators were monitored: water content, organic matter, fast-acting potassium, fast-acting phosphorus, total nitrogen, and total phosphorus. [Results] There were significant differences in soil moisture content, organic matter, available potassium, and total phosphorus between the two samplings in the tension fracture area (p<0.01), but there were no significant differences in available phosphorus and total nitrogen (p>0.05). Principal component analysis showed that the first principal components were organic matter, total nitrogen, and total phosphorus (positive), and the second principal components were water content and fast-acting potassium (negative). Based on the comprehensive nutrient evaluation-principal component score analysis, the integrated nutrient score increased with time. However, the nutrients in the tension fracture zone gradually increased from the top to the bottom of the subsidence slope. [Conclusion] Surface tension fractures were widely distributed in the coal mining subsidence area, leading to a decline in soil quality.

    参考文献
    相似文献
    引证文献
引用本文

范廷玉,陈迎香,路啊康,颜昭耀,赵一凡,严家平,王顺,王兴明,魏祥平,张燕海.淮北矿区地表拉张裂隙区耕地土壤主要养分特征[J].水土保持通报,2023,43(1):8-15,23

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-07-02
  • 最后修改日期:2022-07-25
  • 录用日期:
  • 在线发布日期: 2023-04-08
  • 出版日期: