水力侵蚀下砒砂岩坡面植被格局对土壤颗粒空间分布的影响
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

S152

基金项目:

中央引导地方科技发展资金项目“砒砂岩坡面水力侵蚀过程与植被斑块格局演变互馈机制研究”(2021ZY0023);内蒙古自治区科技计划项目“黄河十大孔兑流域生态修复空间精准识别与智慧水土保持技术”(2021GG0052)


Effects of Vegetation Pattern on Spatial Distribution of Soil Particles Due to Water Erosion on an Pisha Sandstone Slope
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    [目的] 研究内蒙古鄂尔多斯市典型砒砂岩地区不同植被格局下表层土壤颗粒组成空间分布特征,探明水力侵蚀下土壤颗粒分选搬运机制,为该区域生态环境恢复提供理论基础。[方法] 基于野外径流小区的原位监测试验,采用三维激光扫描与地统计学相结合的方法分析自然降雨条件下,砒砂岩坡面不同植被格局对表层土壤颗粒空间分布的影响。[结果] ①均匀分布的植被格局可有效抑制坡面的产流产沙。与裸露坡面相比其侵蚀区面积、平均径流量、平均泥沙量分别降低了5.35%,63.16%,76.47%。②均匀分布的植被格局下土壤黏粒、粉粒的含量分别较雨前增加了1.3%,2.2%,砂粒含量减少了3.2%;随机分布、聚集分布的植被格局下砂粒的含量分别增加了5.8%,15.3%,使土壤质地粗化。③不同的植被格局是引起土壤颗粒空间变异的主要因素。与降雨前相比,均匀分布、随机分布的植被格局使粉粒、砂粒的块金系数变高,空间自相关性降低;聚集分布的植被格局使黏粒、粉粒的块金系数由95.06%,83.89%降为0.07%,0.06%,表现出强烈的空间自相关性。[结论] 均匀分布的植被格局对砒砂岩坡面有着良好的水土保持作用,可显著减少坡面产流产沙过程并抑制土壤粗化。

    Abstract:

    [Objective] The spatial distribution characteristics of surface soil particles under different vegetation patterns at Pisha sandstone area in tipical area in Ordos City, Inner Mongolia Autonoous Region, and the sorting and transportation mechanisms of water erosion for soil particles were studied in order to provide a theoretical basis for the restoration of the ecological environment in this area. [Methods] The study was conducted with in-situ monitoring of field runoff plots. The effects of different vegetation patterns on the spatial distribution of surface soil particles on Pisha sandstone slopes under natural rainfall conditions were determined by combining three-dimensional laser scanning and geostatistics. [Results] ① The uniformly distributed vegetation pattern effectively inhibited runoff and sediment production on the slope. The erosion area, average runoff, and average sediment volume were 5.35%, 63.16%, and 76.47%, respectively, lower than observed for the bare slope. ② Under the uniformly distributed vegetation pattern, the contents of soil clay and silt particles were 1.3% and 2.2%, respectively, greater after rain than before rain, and sand content was 3.2% lower. The content of sand particles increased after rain by 5.8% and 15.3% in the randomly distributed and aggregated vegetation patterns respectively, resulting in a coarsening of soil texture. ③ Different vegetation patterns were the main factors causing the spatial variation of soil particles. The uniformly distributed and randomly distributed vegetation patterns increased the nugget coefficients of silt and sand particles after rainfall, and decreased the spatial autocorrelation. The aggregated vegetation pattern decreased the nugget coefficients of clay and silt particles from 95.06% and 83.89% to 0.07% and 0.06%, showing a strong spatial autocorrelation. [Conclusion] A uniformly distributed vegetation pattern produced suitable soil and water conservation benefits on an arsenic sandstone slope, significantly reducing runoff and sediment production and inhibiting soil coarsening.

    参考文献
    相似文献
    引证文献
引用本文

张尚轩,李龙,朱志卓,张鹏,郭洋洋,姚立强.水力侵蚀下砒砂岩坡面植被格局对土壤颗粒空间分布的影响[J].水土保持通报,2023,43(4):83-94,102

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-08-21
  • 最后修改日期:2022-12-29
  • 录用日期:
  • 在线发布日期: 2023-09-27
  • 出版日期: