基于LSTM模型预测不同水保工程措施条件下土壤侵蚀量——以辽西北地区为例
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

S157.1

基金项目:

中煤科工集团沈阳设计研究院有限公司科研基金项目“神东煤炭矿区采煤沉陷区耕地复垦技术研究”(NK002-2021)


Estimating Soil Erosion Under Different Soil and Water Conservation Engineering Measures Using LSTM model—A Case Study in Northwest Liaoning Province
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    [目的] 准确模拟和预测不同水保工程措施下土壤侵蚀量,为辽西北地区精准预测土壤侵蚀量提供技术和理论依据。[方法] 基于野外径流小区2011—2021年的监测数据,包括:最大30 min和60 min降雨强度(I30I60)、降雨历时(T)、降雨量(P)和土壤侵蚀量,建立了长短期记忆神经网络(LSTM)分别对3种工程措施(水平槽、果树台田和梯田)下的土壤侵蚀量进行预测。并将LSTM预测结果与3个经典机器学习模型〔反向传播神经网络(BP)、随机森林(RF)和支持向量机(SVM)〕预测的结果进行对比。[结果] ①在3种工程措施中,I30I60T和P对土壤侵蚀量的影响程度不同,但I30I60T对土壤侵蚀量的影响大于P。②利用BP模型预测土壤侵蚀量的相对均方根误差(NRMSE)均大于0.2。③相比于RF和SVM模型,LSTM模型在3种工程措施下(水平槽、果树台和梯田)预测土壤侵蚀量的NRMSE分别降低了约0.04~0.08,0.02~0.08,0.05~0.08。④利用I30T作为LSTM模型的输入特征预测土壤侵蚀量的精度与使用I30I60TP为输入特征时的预测精度相近。[结论] 在辽西北地区3种水保工程措施中,利用LSTM模型基于最大30 min雨强和降雨历时对土壤侵蚀量进行预测,取得了较其他传统模型高的预测精度。这说明LSTM模型可在同类地区土壤侵蚀量的精准模拟和确定水土保持措施中推广和应用。

    Abstract:

    [Objective] The soil erosion under different conservation engineering measures was precisely predicted in order to provide a technical and theoretical basis for formulating appropriate conservation measures in Northwest Liaoning Province. [Methods] We used experimental plot data from 2011 to 2021 that included maximum precipitation intensity in 30 and 60 minutes (I30 and I60), precipitation duration (T), and precipitation (P) to construct a long short-term memory neural network model (LSTM) to predict soil erosion under three different water-and-soil conservation measures (horizontal trough, fruit tree terrace, terrace). Results from the LSTM model were compared with the results of three classical machine learning models, i.e., artificial neural networks (BP), random forest (RF), and support vector machine (SVM). [Results] ① The impacts of I30, I60, T, and P on soil erosion were different for the three different conservation conditions, but in general, I30, I60, and T had significant impacted on soil erosion. ② The normal relative mean square error (NRMSE) of the BP model under the three different water-and-soil conservation measures were all greater than 0.2. ③ Compared with the RF and SVM models, the LSTM model decreased NRMSE by 0.04~0.08, 0.02~0.08, and 0.05~0.08 under the three different water-and-soil conservation measures, respectively. ④ The LSTM model based on only two input features (I30 and T) had a similar accuracy with the LSTM model based on four input features in predicting soil erosion. [Conclusion] The LSTM model was used to predict the soil erosion amount based on the maximum 30 min rainfall intensity and rainfall duration, and the prediction accuracy was higher than other traditional models. This shows that the LSTM model can be popularized and applied in the accurate simulation of soil erosion and the determination of soil and water conservation measures in similar areas.

    参考文献
    相似文献
    引证文献
引用本文

李明伟.基于LSTM模型预测不同水保工程措施条件下土壤侵蚀量——以辽西北地区为例[J].水土保持通报,2023,43(4):162-169

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-09-28
  • 最后修改日期:2023-01-17
  • 录用日期:
  • 在线发布日期: 2023-09-27
  • 出版日期: