基于支持向量机回归的次降雨小流域侵蚀产沙预报研究——以晋西王家沟为例
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点基础研究发展计划973项目(2007CB407201);国家自然科学基金重点项目(40335050);西北农林科技大学创新团队建设计划(01140202)


Soil Erosion and Sediment Prediction at Watershed Scale Under Single Rainfall Event Based on Support Vector Regression
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于次降雨小流域侵蚀产沙过程的复杂性、非线性,利用支持向量机回归和主成分分析方法。确定了影响次降雨小流域侵蚀产沙量的关键因子,包括浑水径流深、洪峰最大流量、降雨量和30 min最大降雨强度。建立了向量机回归支持下的次降雨小流域侵蚀产沙预测模型。利用60次侵蚀产沙实测资料,对模型预报精度进行了分析,结果表明,基于支持向量回归的次降雨流域侵蚀产沙预报模型具有较好的预测精度,预测精度平均为在86%。该研究为揭示次降雨小流域土壤侵蚀规律提供了新的途径和方法。

    Abstract:

    Based on complexit y and nonlinearit y of soil erosion and sediment in small watershed under single rainfall event, the support vector regression(SVR) and method of the principal component analysis(PCA) were used to determine key factors affecting soil erosion and sediment from Wangjiagou watershed under sin- gle rainfall event.Results showed tha t mud runoff depth, peak flood discharge, maximum 30 min rainfall in- tensity, and rainfall amount were key factors affecting soil erosion and sediment in Wangjiagou watershed.An erosion prediction model by SVR was developed based on observed data for 60 rainfall events in Wangjia-gou watershed.The model validation indicated that the model predicted precision reached as much as 86% for60 rainfall events.The research illustrates that SVR provides a new approach to study complexity and non- linearity of soil erosion and sediment in small watershed under a single rainfall event.

    参考文献
    相似文献
    引证文献
引用本文

李斌兵,郑粉莉,龙栋才,李静.基于支持向量机回归的次降雨小流域侵蚀产沙预报研究——以晋西王家沟为例[J].水土保持通报,2007,(6):120-125

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2007-04-23
  • 最后修改日期:2007-09-11
  • 录用日期:
  • 在线发布日期: 2014-12-16
  • 出版日期: