BP神经网络在不同植被产流产沙分析中的应用
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(50209016);陕西省自然科学基金(2003D13);陕西省教育厅重点实验室项目(04JS15)


Application of BP Neural Network to the Analyses of Runoff and Sediment Yield with Different Types of Vegetation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    以甘肃省西峰市南小河沟小流域径流场为研究对象,利用BP神经网络对4种植被类型的径流小区(农田、林地、人工草地和天然荒坡)进行了产流产沙量模拟和预测。其模拟产流量的相对误差分别为0.2%~5.7%,0.1%~2.5%,0.7%~2.9%和0.1%~3%;模拟产沙量的相对误差分别为0.1%~3.2%,0.2%~3.1%,0.6%~4.2%和0.2%~2.7%。预测农地、林地、草地和天然荒坡产沙量最大相对误差分别为—11%,14%,—14.6%,18%,产流量最大相对误差分别为10.9%,27.3%,15%,26.3%。结果表明,BP神经网络预测产流产沙的效果较好,对径流小区运用神经网络进行蓄水拦沙指标分析是可行的。

    Abstract:

    With the method of BP neural network, simulation and prediction of runoff generation and sediment yield in four different runoff plots(farmland, wood land, artificial grassland, and abandoned land) are studied.Relative errors of runoff generation in four different plots are 0.2%- 5.7%, 0.1%- 2.5%, 0.7%-2.9%, and 0.1%-3%, respectively; relative errors of sediment yield, 0.1%-3.2%, 0.2% -3.1%,0.6%-4.2%, and 0.2%-2.7%; maximum relative errors of runoff generation, -11%, 14%,-14.6%, and 18%; the maximum relative errors of sediment yield, 10.9%, 27.3%, 15.0%, and 26.3%.The results show that the effect of simulation and prediction of runoff generation and sediment yield using the met hod of BP neural network is good and that application of this method to the analyses of impound and intercepting sediment from runoff plot is feasible.

    参考文献
    相似文献
    引证文献
引用本文

李淼,周建国,宋孝玉,沈冰. BP神经网络在不同植被产流产沙分析中的应用[J].水土保持通报,2007,(6):152-224

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2007-04-25
  • 最后修改日期:2007-08-06
  • 录用日期:
  • 在线发布日期: 2014-12-16
  • 出版日期: