不同基材边坡土壤肥力变化趋势预测——以向家坝水电站工程区为例
作者:
基金项目:

十二五国家科技支撑计划项目“金沙江梯级水电开发区生态保护与入库泥沙调控关键技术与示范”(2012BAC06B02)


Trend Prediction of Soil Fertility of Various Substrate Slopes -A Case Study of Xiangjiaba Hydropower Project Area
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 对向家坝水电站工程区7种不同基材边坡土壤在2005-2014年的肥力进行测定和分析,并预测未来肥力变化趋势,旨在为大型水利水电工程区边坡植被重建及生态恢复提供理论与技术支撑。[方法] 运用灰色理论研究各肥力因子间的灰色关联度,以此确立主要肥力因子来表征土壤肥力,而后建立Logistic预测模型探讨土壤肥力未来25 a的变化情况。[结果] 微生物量与其他肥力因子间的灰色关联度均大于其他肥力因子相互之间的灰色关联度,可作为主要肥力因子来表征土壤的肥力水平;2005-2040年上述边坡土壤微生物量(肥力水平)总体表现为:天然林 >天然次生林 >植被混凝土边坡 >厚层基材 >框格梁回填土 >客土喷播 >弃渣地。[结论] 随着时间的推移,各边坡土壤的微生物量(肥力水平)将最终趋向稳定,在人工营造的边坡植被生境中,植被混凝土边坡的土壤肥力表现最佳。

    Abstract:

    [Objective] Soil fertilities of seven substrate slopes in Xiangjiaba hydropower project area were measured in the years from 2005 to 2014. The changing trend of soil fertility was predicted to provide theoretical and technical support for slope vegetation restoration in large water conservancy and hydropower project. [Methods] Grey theory and logistic equation were integrated to establish a structurally sound and high-precision logistic model for forecasting the future trend of main soil fertility. The main soil fertility was decided by Grey correlation degree among various soil fertility factors in different slopes. [Results] Grey correlation degrees between microbial biomass and other fertility factors were all larger than the ones among other fertility factors, and thereby the soil microbial biomass can be regarded as the main soil fertility factor and denote the soil fertility level. Soil fertilities indicated by microbial biomass were predicted having an overall order in 2005-2040 that is natural forest(NF) >natural secondary forest(NSF) >vegetation-growing concrete gunning(VGCG) >thick layer substrate(TLS) >framed beams and soil covered(FBSC) >external-soil spray seeding(ESS) >discarded residue(DR). [Conclusion] Soil microbial biomass on different substrate slopes will eventually get stable with the time pass by. The VGCG slope's fertility level is the best.

    参考文献
    [1] 焦晓光,高崇升,隋跃宇,等.不同有机质含量农田土壤微生物生态特征[J].中国农业科学,2011,44(18):3759-3767.
    [2] 冯峰,王辉,方涛,等.东湖沉积物中微生物量与碳、氮、磷的相关性[J].中国环境科学,2006,26(3):342-345.
    [3] 靳正忠,雷加强,徐新文,等.沙漠腹地咸水滴灌林地土壤养分、微生物量和酶活性的典型相关关系[J].土壤学报,2008,45(6):1119-1127.
    [4] Schroth G, Sinclair F L. Trees, Crops and Soil Fertility[M]. Oxford: Oxford University Press, 2003.
    [5] Krishnan P, Alexander J D, Butler B J, et al. Reflectance technique for predicting soil organic matter[J]. Soil Science Society of America Journal, 1980,44(6):1282-1285.
    [6] 陈海波,舒安平,李芮.山东省济莱市高速公路生态护坡植被恢复过程分析[J].水土保持通报,2010,30(1):93-99.
    [7] 赵娟,许文年,夏栋,等.向家坝工程扰动区不同类型边坡土壤酶与肥力的相关性研究[J].安徽农业科学,2011,39(26):16043-16045.
    [8] 吴彬,夏振尧,杨悦舒,等.向家坝工程扰动区不同类型边坡土壤不同形态磷的分布[J].湖北农业科学,2014,53(6):1262-1267.
    [9] 李绍才,孙海龙,杨志荣,等.岩石边坡基质-植被系统的养分循环[J].北京林业大学学报,2006,28(2):85-90.
    [10] 章梦涛,邱金淡,颜冬.客土喷播在边坡生态修复与防护中的应用[J].中国水土保持科学,2004,2(3):10-12.
    [11] 许文年,夏振尧,周明涛,等.植被混凝土生态防护技术理论与实践[M].北京:中国水利水电出版社,2012.
    [12] 章家恩.生态学常用试验研究方法与技术[M].北京:化学工业出版社,2007.
    [13] 邓聚龙.灰理论基础[M].湖北 武汉:华中科技大学出版社,2002.
    [14] 刘思峰,党耀国,方志耕.灰色系统理论及其应用[M].北京:科学出版社,2004.
    [15] 阎慧臻. Logistic模型在人口预测中的应用[J].大连工业大学学报,2008,27(4):333-335.
    [16] 胡亦郑,黄庆棉,罗勇.Logistic模型的预测应用两例[J].数学的实践与认识,2007,37(16):138-141.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周明涛,胡旭东,许文年.不同基材边坡土壤肥力变化趋势预测——以向家坝水电站工程区为例[J].水土保持通报,2016,36(4):107-111,117

复制
分享
文章指标
  • 点击次数:1007
  • 下载次数: 1253
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2015-09-29
  • 最后修改日期:2015-11-10
  • 在线发布日期: 2016-09-21