Abstract:[Objective] The objective of this paper is to simulate the characteristics of precipitation in the future, in order to provide a theoretical basis for agricultural production and flood control and disaster mitigation in the region along the Yangtze River in Anhui Province. [Methods] Based on scenario of RCP4.5 greenhouse gas emissions, regional precipitation along the Yangtze River in Anhui Province during 1960—2065 was simulated using the MRI-CGCM3 model error correction data. [Results] The error correction model data can well simulate the variation characteristics of precipitation along the Yangtze River in Anhui Province. There were big differences in precipitation in different periods of the future, and more precipitation in spring and summer, less precipitation in autumn and winter. The increase of daily precipitation in the four seasons and the average annual precipitation of 2036—2065 was higher than that in 2006—2035, and the biggest difference in autumn. In terms of the data fluctuations, the precipitation fluctuations in different periods were larger in summer, smaller in the spring. The smaller fluctuations occur in autumn and winter of 2006—2035, and higher fluctuations in autumn and winter in 2036—2065. As for regional precipitation variation characteristics, the daily precipitation increases gradually from north to south with the seasonal characteristics of more precipitation in autumn and winter than that in spring and summer in Anhui Province along the Yangtze River in 2006—2065. Compared to 2006—2035, the geographical features of the regional precipitation change in 2036—2065 were more obvious and the seasonal variation rate increased. The geographical change strip trends and direction of precipitation anomaly varies by seasons. [Conclusion] The regional future precipitation increases but with higher variability along the Yangtze River in Anhui Province.