基于GlobeLand 30数据和CA_Markov模型的郑州市2000-2020年地表覆盖变化特征及预测分析
作者:
基金项目:

国家自然科学基金项目“基于半监督随机森林的城市地表覆盖主被动遥感数据协同分类研究”(41601450);河南省高等学校重点科研项目(16A420004);河南省高校基本科研业务费专项(NSFRF140113);河南理工大学博士基金项目(B2015-20);河南省基础与前沿项目(152300410098)


Land Use and Land Cover Feature Analyses in Zhengzhou City During 2000 to 2020 Based on GlobeLand 30 and CA_Markov Model
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    [目的]针对不同分类算法对地物识别结果的差异性导致地表覆盖变化分析难以为城市变化提供参考信息和决策依据问题。[方法]研究以GlobeLand 30标准产品为数据源,结合CA_Markov模型,对郑州地区2000-2020年土地利用变化速度、幅度、程度,以及熵值演变方向等时空变化特征进行分析与模拟预测。[结果](1)2000-2010年,郑州地区人造地表显著增加,湿地、耕地、草地有一定程度的减少,其中人造地表和湿地的变化速度相对较快;(2)2000-2010年,郑州地区土地利用程度变化量为8.04,土地利用信息熵和均衡度都有所提升,优势度相应降低;(3)预测2020年郑州地区地表覆盖状态同2010年相比,人造地表和草地分别增加68.88%和49.99%,水体、湿地增加幅度均在30%以上,耕地、林地有一定程度的减少。[结论]2000-2020年,郑州地区土地利用总体分布格局具有显著性差异,土地利用的复杂性增加,环境问题日益凸显。

    Abstract:

    [Objective] The common problem in the processing of remote sensing images, that is different classification algorithms may lead to different identification results of ground objects, was discussed, to provide reference information of urban change and decision making based on LULC analysis.[Methods] In this research GlobeLand 30 product and CA_Markov model were selected to monitor and analyze land use degree, entropy change of land use, spatial-temporal change of land use in Zhengzhou area from 2000 to 2020.[Results] (1) There was a great land use degree change from 2000 to 2010. During this period human-made cover type was increasing greatly; on the contrary, wetland, farmland, grassland were in a decreasing trend. Where human-made earth surface and wetland changed significantly. (2) The amount of land use was 8.04, entropy of land use and equilibrium degree were promoted, while dominance index decreased. (3) There were 68.88% and 49.99% increases for human-made earth surface and grass land respectively, and there were more than 30% increases for both of water surface and wetland.[Conclusion] There was a significant difference of landscape from 2000 to 2020. The complexity of land use was increasing, and the proportionality of land use raised.

    参考文献
    [1] Pijanowski B C, Robinson K D. Rates and patterns of land use change in the Upper Great Lakes States, USA:A framework for spatial temporal analysis[J]. Landscape & Urban Planning, 2011, 102(2):102-116.
    [2] 柴宏博,杨山.2001-2008年无锡市土地利用景观格局变化分析[J].人文地理,2012(4):94-97.
    [3] Overmars K P, Verburg P H. Analysis of land use drivers at watershed and household level linking two paradigms at the Philippine forest fringe[J]. International Journal of Geographical Information Science, 2005,19(2):125-152.
    [4] 韩春健,吕巧灵,吴克宁,等.郑州市土地利用变化对土壤肥力质量时空变异的影响[J].河南农业大学学报.2007,41(2):160-166.
    [5] 宋轩,石端晓,张雪雷,等.基于元胞自动机的郑州市区土地利用变化研究[J].河南科学,2008.26(8):971-976.
    [6] Brovelli M A, Molinari M E, Hussein E, et al. The first comprehensive accuracy assessment of GlobeLand 30 at a national level:Methodology and results[J]. Remote Sensing, 2015,7(4):4191-4212.
    [7] 陈军,陈晋,廖安平,等.全球30 m地表覆盖遥感制图的总体技术[J].测绘学报,2014,43(6):551-557.
    [8] 陈利军,陈军,廖安平,等.30 m全球地表覆盖遥感分类方法初探[J].测绘通报,2012(S):1-14.
    [9] 杨洋,麻馨月,何春阳.基于GlobeLand 30的耕地资源损失过程研究:以环渤海地区为例[J].中国土地科学,2016,30(7):72-81.
    [10] 杨振州,陈利军,韩佳鹏.基于GlobeLand 30的水田提取方法研究[J].测绘与空间地理信息,2016,39(8):52-57.
    [11] 李晶辉.郑州市土地利用变化及驱动力分析[D].河南郑州:河南农业大学,2006.
    [12] Giri C, Pengra B, Long J, et al. Next generation of GLC characterization, mapping, and monitoring[J]. International Journal of Applied Earth Observation and Geoinformation, 2013,25(1):30-37.
    [13] 张宇硕,陈军,陈利军,等.2000-2010年西伯利亚地表覆盖变化特征:基于GlobeLand 30的分析[J].地理科学进展,2015,34(10):1324-1333.
    [14] 王良建,包浩生,彭补拙.基于遥感与GIS的区域土地利用变化的动态监测与预测研究[J].经济地理2000,20(2):47-51.
    [15] 刘纪远,中国资源环境宏观调查与动态研究[M].北京:中国科学技术出版社,1996:158-188.
    [16] Ademola K B, Paul L G. Land cover dynamics in an urban area of Ghana[J]. Earth Interactions, 2004,8(1):1-15.
    [17] 庄大方,刘纪远.中国土地利用程度的区域分异模型研究[J].自然资源学报,1997,12(2):105-111.
    [18] 刘纪远,中国资源环境宏观调查与动态研究[M].北京:中国科学技术出版社,1996:158-188.
    [19] 赛莉莉,王涛,陈坤,等.2000-2010年威海城市土地利用变化及马尔科夫预测[J].鲁东大学学报:自然科学版,2016,32(2):162-167.
    [20] 郭荣中,杨敏华.基于信息熵的长株潭区域土地利用结构分析[J].农业现代化研究2013,34(1):73-76.
    [21] Lambin E F, Rounsevell M, Geist H. Are current agricultural land use models able to predict change in land use intensity?[J]. Agriculture, Ecosystem and Environment, 2000,82(1/3):321-331.
    [22] Abuelaish B, Olmedo M T C. Scenario of land use and land cover change in the Gaza Strip using remote sensing and GIS models[J]. Arabian Journal of Geosciences, 2016, 9(4):274.
    [23] 赫晓慧,牛金星,郑东东,等.基于遥感的郑州市黄河湿地植被覆盖度变化研究[J].水土保持通报,2014,34(1):334-336.
    引证文献
    引证文献 [1]
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘培,贾守军,马朝阳,卢晓峰,韩瑞梅,贾函.基于GlobeLand 30数据和CA_Markov模型的郑州市2000-2020年地表覆盖变化特征及预测分析[J].水土保持通报,2017,37(4):282-287

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-09-25
  • 最后修改日期:2016-12-20
  • 在线发布日期: 2017-09-12