基于近地高光谱的土壤氯离子含量估测
作者:
基金项目:

湖南省教育厅科学研究项目“湘江流域土地利用变化及土壤潜力转移图谱研究”(14C0467);地理空间信息技术国家地方联合工程实验室开放基金项目(2014GISNELJJ004)


Estimating Content of Soil Chloride Based on Hyperspectral Data
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的]建立土壤氯离子与高光谱波段的多元线性回归模型,获取盐渍化信息,为盐分的高精度提取提供更有效的方法,为农业生态环境重建工作提供科学依据。[方法]以山东省垦利县作为研究区,于2014年10月5-7日野外采集93个土壤样本,利用ASD高光谱仪野外采集土样高光谱数据并进行预处理,然后采用多元回归和主成分分析方法建立估测氯离子含量的高光谱模型,以快速估测氯离子含量。[结果]氯离子在近红外749,830,987,1301,1 432,1 486 nm较为敏感,在土壤光谱分析的基础上,得到室内风干土壤氯离子含量预测最优模型,模型均通过T检验和F检验,能较好地预测土壤氯离子含量。[结论]研究区土壤各组分盐离子中,阳离子以钠离子为主,阴离子以氯离子为主,该模型使间接得到土壤盐分含量具有较好可行性。

    Abstract:

    [Objective] Constructing a multiple linear regression model of describing soil chloride ion with high spectral bands as independent variables to get soil salinization information, in order to provide a more effective method for the high precision extraction of salt, and to provide scientific basis for the reconstruction of agricultural ecological environment.[Methods] 93 field soil samples were collected and processed by high ASD spectrometer in Kenli County of Shandong Province on October 5 to 7, 2014. A estimating model was built using multiple regression and principal component analysis method to evaluating the content of chloride ion quickly.[Results] The chloride ion is sensitive in the 749, 830, 987, 1 301, 1 432 and 1 486 nm of spectral bands. An optimum model for predicting chlorine ion content in indoor dried soil was obtained on the basis of soil spectral analysis, this model was verified by Student's t test.[Conclusion] The cations in the soil components of the study area are mainly sodium ions, the anions are mainly chloride ions, and this model makes it possible to obtain soil salinity indirectly.

    参考文献
    [1] 南京农业大学.土壤农化分析[M].2版.北京:农业出版社出版,1986:115-137.
    [2] 宋韬,鲍一丹,何勇.利用光谱数据快速检测土壤含水量的方法研究[J].光谱学与光谱分析,2009,29(3):675-677.
    [3] 朱登胜,吴迪,宋海燕,等.应用近红外光谱法测定土壤的有机质和pH值[J].农业工程学报,2008,24(6):196-199.
    [4] Sánchez N, Martinez Fernandez J, Piles M, et al. Hyperspectral derived indices for soil moisture estimation at very high resolution[C].2014 IEEE Geoscience and Remote Sensing Symposium. IEEE, 2014:2898-2901.
    [5] Ghosh G, Kumar S, Saha S K. Hyperspectral satellite data in mapping salt-affected soils using linear spectral unmixing analysis[J]. Journal of the Indian Society of Remote Sensing, 2012,40(1):129-136.
    [6] 屈永华,段小亮,高鸿永,等.内蒙古河套灌区土壤盐分光谱定量分析研究[J].光谱学与光谱分析,2009,29(5):1362-1366.
    [7] 翁永玲,宫鹏. 黄河三角洲盐渍土盐分特征研究[J].南京大学学报:自然科学,2006,42(6):602-610.
    [8] 卢霞.滨海盐土盐分含量与其光谱特征的关系研究[J].水土保持通报,2012,32(5):186-190.
    [9] 李晓明,韩霁昌,李娟.典型半干旱区土壤盐分高光谱特征反演[J].光谱学与光谱分析,2014,34(4):1081-1084.
    [10] 陈红艳,赵庚星,张晓辉,等.基于遗传算法结合偏最小二乘的潮土碱解氮高光谱特征及含量估测[J].中国农学通报,2015,31(2):209-214.
    [11] 扶卿华,倪绍祥,王世新,等.土壤盐分含量的遥感反演研究[J].农业工程学报,2007,23(1):48-54.
    [12] 张丽,蒋平安,武红旗,等.北疆典型土壤反射光谱特征研究[J].水土保持学报,2013,27(1):273-276.
    [13] 戚浩平,翁永玲,赵福岳,等.茶卡-共和盆地土壤盐分与光谱特征研究[J].国土资源遥感,2010(86):4-8.
    [14] 关云秀,刘高焕,刘庆生,等.黄河三角洲盐碱地遥感调查研究[J].遥感学报,2001,5(1):46-52.
    [15] 张成雯,唐家奎,于新菊,等.黄河三角洲土壤含盐量定量遥感反演[J].中国科学院研究生院学报, 2013,30(2):220-227.
    [16] Mitran T, Ravisankar T, Fyzee M A, et al. Retrieval of soil physicochemical properties towards assessing salt-affected soils using Hyperspectral Data[J]. Geocarto International, 2015,30(6):701-721.
    [17] Farifteh J, Van der Meer F, Atzberger C, et al. Quantitative analysis of salt-affected soil reflectance spectra:A comparison of two adaptive methods (PLSR and ANN)[J]. Remote Sensing of Environment, 2007,110(1):59-78.
    [18] Mashimbye Z E, Cho M A, Nell J P, et al. Model-based integrated methods for quantitative estimation of soil salinity from hyperspectral remote sensing data:A case study of selected South African soils[J]. Pedosphere, 2012,22(5):640-649.
    [19] Kobayashi C, Lau I C, Wheaton B, et al. Mapping of soil salinity using an airborne hyperspectral sensor in Western Australia[C].2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, 2015:2684-2687.
    [20] 李新举.黄河三角洲土壤质量时空演变及可持续利用评价研究[D].山东泰安;山东农业大学,2005.
    [21] 蒲智,于瑞德,尹昌应,等.干旱区典型盐碱土壤含盐量估算的最佳高光谱指数研究[J].水土保持通报,2012,32(6):129-133.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王明宽,莫宏伟,陈红艳.基于近地高光谱的土壤氯离子含量估测[J].水土保持通报,2017,37(6):214-219

复制
分享
文章指标
  • 点击次数:963
  • 下载次数: 1045
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2016-10-24
  • 最后修改日期:2016-12-21
  • 在线发布日期: 2018-01-19