冰川退缩迹地植被原生演替初期关键种的碳氮磷生态化学计量特征
作者:
中图分类号:

Q948.1

基金项目:

四川省重点研发计划项目“灾害地质体植被快速恢复技术与示范”(18ZDYF),“川中丘陵区坡耕地植物地埂坡式梯地建设关键技术研究”(2020YFS0022)


Characteristics of Organic Carbon, Total Nitrate, Total Phosphorus and Its Stoichiometry of Key Species on Primary Succession Stages of Vegetaion in Glacier Forehead in Gongga Mountain
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [32]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 对贡嘎山海螺沟冰川退缩迹地植被原生演替初期关键种柳叶菜(Epilobium hirsutum)和马河山黄芪(Astragalus mahoschanicus)碳氮磷含量及生态化学计量进行研究,掌握两关键种碳氮磷及其化学计量学特征,为预测未来在全球气候变化背景下冰川退缩区域环境变化及植被演替趋势研究提供理论支持。[方法] 采用野外调查与室内分析相结合的方法,探讨贡嘎山海螺沟冰川退缩迹地植被原生演替序列初期关键种柳叶菜和马河山黄芪根、茎、叶、果实的碳、氮和磷含量及其化学计量学特征。[结果] 柳叶菜根系有机碳含量变化范围为436~445 g/kg,较马河山黄芪根系有机碳含量高。不同器官的全磷含量均值柳叶菜为1.78 g/kg,马河山黄芪为1.30 g/kg。柳叶菜不同器官的有机碳含量变化依次为:根系 > 果实 > 叶片 > 茎,全氮含量变化依次为:叶片 > 根系 > 果实 > 茎,全磷含量表现依次为:果实 > 叶片 > 根系 > 茎。马河山黄芪不同器官的有机碳含量变化依次为:黄芪根系 > 果实 > 茎 > 叶片,全氮含量变化依次为:叶片 > 根系 > 果实 > 茎,全磷含量变化为:叶片 > 果实 > 根系 > 茎。柳叶菜不同器官的C/N高于马河山黄芪,柳叶菜和马河山黄芪不同器官的N/P变化范围为5.94~17.82。[结论] 马河山黄芪高N/P,低C/P值反映了植物高生长率或繁殖输出,即生长竞争策略。与柳叶菜相比,马河山黄芪有快速生长的特性,以生长竞争优势即生长竞争策略战胜柳叶菜,推动了冰川退缩迹地植被演替进程。

    Abstract:

    [Objective] The characteristics of organic carbon, total nitrate, total phosphorus and its stoichiometry of the key species in primary succession stages of vegetaion were explored in the Hailuogou glacier forehead in Gongga Mountain, in order to provide better and exactly prediction of the vegetation succession under the background of the globing warming.[Methods] Combined with field investigation and indoor experimental analysis, the organic carbon, total nitrogen and total phosphorus of the roots, stems, leaves, seeds of Epilobium hirsutum and Astragalus mahoschanicus were analyzed.[Results] The range of organic carbon of the Epilobium hirsutum root changed between 436-445 g/kg, which was higher than that of the Astragalus mahoschanicus root (416-423 g/kg). The concentrations of the organic carbon of different organs of Epilobium hirsutum were as follows:in roots > in seeds > in leaves > in stems, the concentrations of the total nitrogen were:in leaves > in roots > in seeds > in stems, and the concentrations of the total phosphorus were:in seeds > in leaves > in roots > in stems. While the concentrations of the organic carbon of different organs of Astragalus mahoschanicus were:in roots > in seeds > in stems > in leaves, the concentrations of the total nitrogen were:in leaves > in roots > in seeds > in stems, and the concentrations of the total phosphorus were:in leaves > in seeds > in roots > in stems. The ration of organic carbon to total nitrogen of different organs of Epilobium hirsutum was higher than that of Astragalus mahoschanicus. The ratio of total nitrogen and total phosphorus changed between 5.94 and 17.82.[Conclusion] The high ratio of N/P and low C/P of Astragalus mahoschanicus, which reflects the higher growth ratio and propagation rates. It also indicates that the Astragalus mahoschanicus has stronger growth competition strategy than that of the Epilobium hirsutum and better compelling the succession process.

    参考文献
    [1] 曾德慧,陈广生.生态化学计量学:复杂生命系统奥秘的探索[J].植物生态学报,2005,29(6):1007.
    [2] 朱秋莲, 邢肖毅, 张宏, 等. 黄土丘陵沟壑区不同植被区土壤生态化学计量特征[J]. 生态学报,2013,33(15):4674-4682.
    [3] Crocker R L, Major J. Soil development in relation to vegetation and surface Age at Glacier Bay, Alaska[J]. Journal of Ecology, 1955:427-448.
    [4] 崔之久.贡嘎山现代冰川的初步观察[J].地理学报,2005,24(3):318-338.
    [5] 郑远长.贡嘎山地区主要植物群落分布与气候的关系[J].山地研究,1994.12(4):201-206.
    [6] Li Hailiang, Crabbe M J C, XU Fuli, et al. Seasonal variations in carbon, nitrogen and phosphorus concentrations and C:N:P stoichiometry in the leaves of differently aged Larix principis-rupprechtii Mayr. Plantations[J]. Forests, 2017, 12(9):e0185163.
    [7] Minden V, Keyer L M. Internal and external regulation of plant organ stoichiometry[J]. Plant Biology, 2014.5(16):897-907.
    [8] 宁志英,李玉霖,杨红玲,等.沙化草地土壤碳氮磷化学计量特征及其对植被生产力与多样性的影响[J].生态学报,2019.39(10):3537-3546.
    [9] 罗琰,苏德荣,纪宝明,等.辉河湿地不同草甸植被群落特征及其与土壤因子的关系[J].草业学报,2018.27(3):33-43.
    [10] 万芳,蒙仲举,党晓宏,等.封育措施下荒漠草原针茅植物-土壤C N P化学计量特征[J].草业学报,2020,29(9):49-55.
    [11] 陈富斌,罗辑.1998.贡嘎山高山生态环境研究[M].北京:气象出版社,1998.
    [12] 李宗省,何元庆,贾文雄,等.全球变暖背景下海螺沟冰川近百年的变化[J].冰川冻土,2009,31(1):75-81.
    [13] 鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000.
    [14] Liu Rentao, Zhao Halin, Zhao Xueyong, et al. Facilitative effects of shrubs in shifting sand on soil macro-faunal community in Horqin Sand Land of Inner Mongolia, Northern China[J]. European Journal of Soil Biology, 2011,47(5):316-321.
    [15] Chen Yongliang, Chen Leiyi, Peng Yunfeng, et al. Linking microbial C:N:P stoichiometry to microbial community and abiotic factors along a 3500 km grassland transect on the Tibetan Plateau[J]. Global Ecology and Biogeography, 2016,25(12):1416-1427.
    [16] 薛睿,郑淑霞,白永飞.不同利用方式和载畜率对内蒙古典型草原群落初级生产力和植物补偿性生长的影响[J].生物多样性,2010.18(3):300-311.
    [17] Cheng Man, An Shaoshan. Responses of soil nitrogen, phosphorous and organic matter to vegetation succession of the Loess Plateau of China[J]. Journal of Arid Land, 2015,7(2):216-223.
    [18] 任书杰,于贵瑞,陶波,等.中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究[J].环境科学,2007,28(12):2665-2673.
    [19] Chapin F S, Sharman L C. Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska[J]. Ecological Monographs, 1994,64(64):149-175.
    [20] 周永姣,王满堂,王钊颖,等.亚热带59个常绿与落叶树种不同根序细根养分及化学计量特征研究[J].生态学报,2020,40(14):1-10.
    [21] Wang Congyan, Xiao Hongguang, Liu Jun, et al. Differences in leaf functional traits between red and green leaves of two evergreen shrubs Photinia fraseri and Osmanthus fragrans[J]. Journal of Forestry Research, 2017,28:473-479.
    [22] Leena F, Ohashi M, Noguchi K, et al. Factors causing variation in fine root biomass in forest ecosystems[J]. Forest Ecology and Management, 2011,261(2):265-277.
    [23] Kerkhoff A, Fagan W, Elser J, et al. Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants[J]. the American Naturalist, 2006,168:103-122.
    [24] Gu J C, Wang Y, Fahey T J, et al. Effects of root diameter, branch order, soil depth and season of birth on fine root life span in five temperate tree species[J]. European Journal of Forest Research, 2017,136:727-738.
    [25] 许宇星,王志超,竹万宽,等.不同品种桉树林生活叶-凋落物-土壤碳氮磷化学计量特征[J].西北农林科技大学学报(自然科学版),2018,46(6):94-110.
    [26] Matzek V, Vitousek P M. N:P stoichiometry and protein:RNA ratios in vascular plants:an evaluation of the growth rate hypothesis[J]. Ecology Letters, 2009,12(8):765-771.
    [27] 鲁静,周虹霞,田广宇,等.洱海流域44种湿地植物的氮磷含量特征[J].生态学报,2011.31(3):709-715.
    [28] Koerselman W, Meuleman AFM. The vegetation N:P ratio:A new tool to detect the nature of nutrient limitation[J]. Journal of Appl. Ecol., 1996,33(6):1441-1450.
    [29] 王洪义,丁睿,王智慧,等.氮、磷添加对草地不同冠层植物叶片和根系生态化学计量特征的影响[J].草业学报,2020,29(8):37-45.
    [30] 张萍,章广琦,赵一娉,等.黄土丘陵区不同森林类型叶片-凋落物-土壤生态化学计量特征[J].生态学报,2018,38(14):5087-5098.
    [31] Young K, Mangold J. Medusahead(Taeniatherum caputmedusae) outperforms squirreltail(Elymus elymoides) through interference and growth rate[J]. Invasive Plant Science and Management, 2008,1(1):73-81.
    [32] Elser J J, Acharya K, Kyle M, et al. Growth rate-stoichiometry couplings in diverse biota[J]. Ecology Letters, 2003,6(10):936-943.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周萍,庄文化,李明明,龙翼,史忠林,周继.冰川退缩迹地植被原生演替初期关键种的碳氮磷生态化学计量特征[J].水土保持通报,2021,41(2):1-9

复制
分享
文章指标
  • 点击次数:788
  • 下载次数: 1186
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2020-12-07
  • 最后修改日期:2021-01-12
  • 在线发布日期: 2021-05-21