基于Markov-DLS模型的江西省多情景下土地利用时空演变分析
作者:
中图分类号:

F301.2

基金项目:

教育部人文社会科学研究规划资助项目“生计资本视角下农地流转行为决策机理、绩效评估与改进研究”(20YJAZH015)。


Analysis of Spatio-temporal Evolution of Land Use in Multiple Scenarios Based on Markov-DLS Model in Jiangxi Province
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [37]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 研究不同情景下未来土地利用结构数量和空间格局变化特征,为实现区域国土空间格局优化和生态环境保护提供决策参考。[方法] 基于Markov-DLS模型,在土地利用转移参数设置过程引入土地利用生产、生活和生态功能评价结果,分析江西省2030年均衡发展情景、粮食安全情景和生态优先情景下国土空间结构和格局变化特征。[结果] ①利用Markov-DLS模型模拟预测的2015年土地利用结构精度在90%以上,空间布局模拟精度达到了96%,kappa系数高达92%以上;②耕地仅在粮食安全情景下有所增长,增幅为0.48%。建设用地在3类情景下均处于增长态势,均衡发展情景下增长最快,增速为1.15%。林地、草地、水域和未利用地等生态用地在3类情景中整体上呈现下降趋势,生态优先情景下降速最慢,仅为-0.36%;③东、南、西部山区林地、草地空间格局相对稳定,而建设用地均呈现出沿江岸线,沿湖岸线发展的趋势,尤其是赣江沿岸和鄱阳湖北岸以及长江沿岸区域最为显著;④整体而言,生态优先情景下以林地、草地、水域和未利用地为核心的生态空间用地面积占比最大,相对下降速度最小。[结论] ①Markov-DLS模型对省级尺度未来土地利用变化预测模拟方面具有较好的适用性。②江西省2030年国土空间土地利用结构变化在均衡发展情景,粮食安全情景和生态优先情景下呈现出明显的差异性。③江西省2030年3类发展情景下国土空间格局呈现出明显的整体一致性和局部差异性特征。

    Abstract:

    [Objective] The characteristics of future land use structure and spatial patterns under different scenarios were studied in order to provide a decision-making reference for the realization of optimal utilization of regional land spatial pattern and protection of ecology and environment. [Methods] Based on the Markov-DLS model and referring to the evaluation results of production-living-ecological functions of different land use, the characteristics of land use structure and spatial patterns under a balanced development scenario, a food security scenario, and an ecological priority scenario in Jiangxi Province in 2030 were analyzed. [Results] ① The accuracy of land use structure predicted by the Markov-DLS model in 2015 was more than 90%, and the accuracy of the spatial layout simulation was 96%. In addition, the kappa coefficient was more than 92%. ② Cultivated land increased only under the food security scenario, with an increase of 0.48%. Construction land showed a growth trend under the three scenarios, and the growth rate was the fastest in the balanced development scenario, reaching 1.15%. Ecological land (such as forest land, grassland, water area, and unused land) showed an overall downward trend in all three scenarios, but the decline was the smallest in the ecological priority scenario (only -0.36%). ③ The spatial patterns of forest land and grassland in the eastern, southern, and western mountainous areas of Jiangxi Province were relatively stable, while construction land showed a trend of development along shorelines of rivers and lakes, especially along the Ganjiang River, the Yangtze River, and the north bank of Poyang Lake. ④ On the whole, under the ecological priority scenario, the ecological space land (forest land, grassland, water area, and unused land) were protected, the area proportion was the largest of all the scenarios, and the relative decline rate was the smallest. [Conclusion] ① The Markov-DLS model has good applicability for predicting and simulating future land use changes at the provincial scale. ② Changes in land use structure in Jiangxi Province in 2030 under the balanced development scenario, the food security scenario, and the ecological priority scenario show obvious differences. ③ The spatial pattern of the land under the three development scenarios for Jiangxi Province in 2030 shows obvious characteristics of overall consistency and local differences.

    参考文献
    [1] 王林辉,王辉,董直庆.经济增长和环境质量相容性政策条件:环境技术进步方向视角下的政策偏向效应检验[J].管理世界,2020,36(3):39-60.
    [2] 关伟,金一.中国能源利用、经济增长演进对生态环境的脉冲响应[J].经济地理,2020,40(2):31-40.
    [3] 彭建,汪安,刘焱序,等.城市生态用地需求测算研究进展与展望[J].地理学报,2015,70(2):333-346.
    [4] 杨露,颉耀文,宗乐丽,等.基于多目标遗传算法和FLUS模型的西北农牧交错带土地利用优化配置[J].地球信息科学学报,2020,22(3):568-579.
    [5] 蒋瑜,濮励杰,朱明,等.中国耕地占补平衡研究进展与述评[J].资源科学,2019,41(12):2342-2355.
    [6] Fu Xin, Wang Xinhao, Yang Jeffrey. Deriving suitability factors for CA-Markov land use simulation model based on local historical data[J]. Journal of Environmental Management, 2018,206:10-19.
    [7] Hu Xiaoli, Li Xin, Lu Ling. Modeling the land use change in an arid oasis constrained by water resources and environmental policy change using cellular automata models[J]. Sustainability, 2018,10(8):2879.
    [8] Jiao Mengyu, Hu Mengmeng, Xia Beicheng. Spatiotemporal dynamic simulation of land-use and landscape-pattern in the Pearl River Delta, China[J]. Sustainable Cities and Society, 2019,49:101581.
    [9] Dewan A, Corner R. Monitoring and prediction of land-use and land-cover (LULC) change[M]. Springer Netherlands, 2014.
    [10] 孟成,卢新海,彭明军,等.基于Markov-C 5.0的CA城市用地布局模拟预测方法[J].中国土地科学,2015,29(6):82-88,97.
    [11] 张学儒,周杰,李梦梅.基于土地利用格局重建的区域生境质量时空变化分析[J].地理学报,2020,75(1):160-178.
    [12] 成超男,胡杨,冯尧,等.基于CA-Markov模型的城市生态分区构建研究:以晋中主城区为例[J].生态学报,2020,40(4):1455-1462.
    [13] 宋蕾,曹银贵,周伟,等.基于SD模型的三峡库区快速城镇化地区耕地利用模拟研究[J].长江流域资源与环境,2018,27(4):818-827.
    [14] 熊鹰,陈云,李静芝,等.基于土地集约利用的长株潭城市群建设用地供需仿真模拟[J].地理学报,2018,73(3):562-577.
    [15] 杨春梅,徐小峰,齐琪,等.城乡融合发展背景下上海市农村宅基地利用变化仿真与模拟[J].中国土地科学,2019,33(9):56-65.
    [16] 李正,王军,白中科,等.贵州省土地利用及其生态系统服务价值与灰色预测[J].地理科学进展,2012,31(5):577-583.
    [17] 张洪,李中元,李彦.基于生态安全的山地城镇土地可持续利用模式研究:以云南大理市为例[J].地理研究,2019,38(11):2681-2694.
    [18] Jin Gui, Chen Kun, Wang Pei, et al. Trade-offs in land-use competition and sustainable land development in the North China Plain[J]. Technological Forecasting & Social Change, 2019,141(C):36-46.
    [19] 杨小艳,凌宇,李龙,等.基于最坏情景理论的连云港土地利用变化情景模拟[J].资源科学,2019,41(6):1082-1092.
    [20] 戴尔阜,马良,杨微石,等.土地系统多主体模型的理论与应用[J].地理学报,2019,74(11):2260-2272.
    [21] 田光进,邬建国.基于智能体模型的土地利用动态模拟研究进展[J].生态学报,2008(9):4451-4459.
    [22] 赵旭,汤峰,张蓬涛,等.基于CLUE-S模型的县域生产-生活-生态空间冲突动态模拟及特征分析[J].生态学报,2019,39(16):5897-5908.
    [23] 郝晓敬,张红,徐小明,等.晋北地区土地利用覆被格局的演变与模拟[J].生态学报,2020,40(1):257-265.
    [24] 马冰滢,黄姣,李双成.基于生态-经济权衡的京津冀城市群土地利用优化配置[J].地理科学进展,2019,38(1):26-37.
    [25] 吴健生,冯喆,高阳,等.基于DLS模型的城市土地政策生态效应研究:以深圳市为例[J].地理学报,2014,69(11):1673-1682.
    [26] 何丹,周璟,高伟,郭怀成,等.基于CA-Markov模型的滇池流域土地利用变化动态模拟研究[J].北京大学学报(自然科学版),2014,50(06):1095-1105.
    [27] 王旭,马伯文,李丹,等.基于FLUS模型的湖北省生态空间多情景模拟预测[J].自然资源学报,2020,35(1):230-242.
    [28] Kang Junfeng, Fang Lei, Li Shuang, et al. Parallel cellular automata Markov model for land use change prediction over Mapreduce framework[J]. ISPRS International Journal of Geo-Information, 2019,8(10):454.
    [29] 邓祥征,林英志,黄河清.土地系统动态模拟方法研究进展[J].生态学杂志,2009,28(10):2123-2129.
    [30] 邓华,邵景安,王金亮,等.多因素耦合下三峡库区土地利用未来情景模拟[J].地理学报,2016,71(11):1979-1997.
    [31] Hishe S, Bewket W, Nyssen J, et al. Analysing past land use land cover change and CA-Markov-based future modelling in the Middle Suluh Valley, Northern Ethiopia[J]. Geocarto International, 2020,35(3):225-255.
    [32] 张红旗,许尔琪,朱会义.中国"三生用地"分类及其空间格局[J].资源科学,2015,37(7):1332-1338.
    [33] 张佰发,苗长虹.黄河流域土地利用时空格局演变及驱动力[J].资源科学,2020,42(3):460-473.
    [34] 袁磊,杨昆.土地利用变化驱动力多尺度因素的定量影响分析[J].中国土地科学,2016,30(12):63-70.
    [35] Feng Yongjiu, Yang Qianqian, Tong Xiaohua, et al. Evaluating land ecological security and examining its relationships with driving factors using GIS and generalized additive model[J]. Science of the Total Environment, 2018,633:1469-1479.
    [36] 刘继来,刘彦随,李裕瑞.中国"三生空间"分类评价与时空格局分析[J].地理学报,2017,72(7):1290-1304.
    [37] Luo Geping, Yin Changying, Chen Xi, et al. Combining system dynamic model and CLUE-S model to improve land use scenario analyses at regional scale:A case study of Sangong watershed in Xinjiang, China[J]. Ecological Complexity,2010,7(2):198-207.
    引证文献
引用本文

田益多,梅昀,陈银蓉.基于Markov-DLS模型的江西省多情景下土地利用时空演变分析[J].水土保持通报,2021,41(3):218-227

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-12-14
  • 最后修改日期:2021-02-24
  • 在线发布日期: 2021-07-08