1996-2017年张家口市区景观格局与地表热环境的时空变化
作者:
中图分类号:

X52;F301.2

基金项目:

国家自然科学基金项目“北方农牧交错带典型集约菜田蒸散及水盐运移过程研究”(41701017);河北省自然科学基金项目(D2020404001);河北建筑工程学院研究生创新基金项目(XY202155);河北省科技厅高水平人才团队建设项目(199A4201H);张家口市科技局人才专项(201903Y)


Spatiotemporal Variations of Landscape Pattern and Urban Thermal Environment in Zhangjiakou City During 1996-2017
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    [目的] 对河北省张家口市景观格局及城市热环境的时空变化及关系进行分析,为缓解城市热环境极端化给人居环境、工业生产带来的严重威胁提供策略。[方法] 基于Landsat遥感影像,通过地表温度反演和移动窗口法分析张家口市区1996—2017年城市热环境和景观格局的时空变化关系。[结果] ①1996—2017年,研究区景观格局主要变化为不透水面景观的增加(81.26 km2)以及植被景观的减少(61.78 km2); ②研究区平均地表温度(LST)在1996—2017年增长了约3℃;不透水面和植被景观的平均LST为27.29℃和23.77℃,分别为城市热环境中的“热源”和“冷源”; ③植被、水域景观面积比例每下降10%,对应的LST分别下降2.71℃和5.77℃;不透水面面积比例增长10%,LST则上升0.25℃;景观聚合度、景观形状指数、耕地面积比例均与LST保持非线性相关。[结论] 1996—2017年张家口市热环境的进一步加剧,主要与城市化扩张以及植被的减少有关。

    Abstract:

    [Objective] The impacts of landscape pattern on urban thermal environment were studied to support the strategies that can mitigate extreme thermal environment caused by rapid urbanization in living environments and industrial production.[Methods] Based on Landsat images in 1996, 2008 and 2017 in Zhangjiakou City of Hebei Province, land surface temperature (LST) retrieval was conducted to quantify and map the thermal environment. Meanwhile, the landscape pattern index was obtained by moving window method at a grid scale. Finally, the specific relationship between the landscape pattern and LST was analyzed quantitatively and spatially.[Results] ① The changes of landscape pattern were featured by the expansion of impervious surface landscape with an increase of more than 81.26 km2 from 1996 to 2017, followed by the reduction in vegetation landscape (61.78 km2). ② During the study period, the average LST of the study area increased by approximately 3℃, and the impervious surface landscape and vegetation landscape as the "heat source" landscape and the "cold source" landscape maintained the average LST of 27.29℃ and 23.77℃, respectively. ③ For every 10% decrease in the proportion of vegetation landscape and water landscape area, the corresponding LST decreased by 2.71℃ and 5.77℃, respectively. For every 10% increase in the proportion of impervious surface area, LST increased by 0.25℃. Landscape aggregation, shape index and proportion of cultivated area all maintained a non-linear correlation with LST.[Conclusion] The urban's thermal environment has developed towards a high level in Zhangjiakou City in the last two decades, which was strongly related to both the increase in impervious surface and reduction in vegetation.

    参考文献
    [1] Department of Economic and Social Affairs. World Urbanization Prospects:The 2007 Revision[R]. United Nations, 2008.
    [2] Li Junxiang, Song Conghe, Cao Lu, et al. Impacts of landscape structure on surface urban heat islands:A case study of Shanghai, China[J]. Remote Sensing of Environment, 2011, 115(12):3249-3263.
    [3] Peng Jian, Xie Pan, Liu Yanxu, et al. Urban thermal environment dynamics and associated landscape pattern factors:A case study in the Beijing metropolitan region[J]. Remote Sensing of Environment, 2016, 173:145-155.
    [4] Liu Huimin, Zhan Qingming, Yang Chen, et al. The multi-timescale temporal patterns and dynamics of land surface temperature using ensemble empirical mode decomposition[J]. Science of the Total Environment, 2018, 652:243-255.
    [5] Voogt J A, Oke T R. Thermal remote sensing of urban climates[J]. Remote Sensing of Environment, 2003, 86(3):370-384.
    [6] Maimaitiyiming M, Ghulam A, Tiyip T, et al. Effects of green space spatial pattern on land surface temperature:Implications for sustainable urban planning and climate change adaptation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 89(3):59-66.
    [7] 黄木易, 岳文泽, 何翔.巢湖流域地表热环境与景观变化相关分析及其尺度效应[J].中国环境科学, 2017, 37(8):3123-3133.
    [8] Szymanowski M, Kryza M. GIS-based techniques for urban heat island spatialization[J]. Climate Research, 2009, 38(2):171-187.
    [9] Meng Fei, Liu M. Remote-sensing image-based analysis of the patterns of urban heat islands in rapidly urbanizing Jinan, China[J]. International Journal of Remote Sensing, 2013, 34(24):8838-8853.
    [10] Hoan N T, Liou Y A, Nguyen K A, et al. Assessing the effects of land-use types in surface urban heat islands for developing comfortable living in Hanoi City[J]. Remote Sensing, 2018, 10(12):552-561.
    [11] Tang Junmei, Di Liping, Xiao Jingfeng, et al. Impacts of land use and socioeconomic patterns on urban heat island[J]. International Journal of Remote Sensing, 2017, 38(11):3445-3465.
    [12] Liu Guilin, Zhang Qian, Li Guangyu, et al. Response of land cover types to land surface temperature derived from landsat-5TM in Nanjing metropolitan region, China[J]. Environmental Earth Sciences, 2016, 75(20):1386.
    [13] Li Xiaoma, Zhou Weiqi, Ouyang Zhiyun, et al. Spatial pattern of green space affects land surface temperature:evidence from the heavily urbanized Beijing metropolitan area, China[J]. Landscape Ecology, 2012, 27(6):887-898.
    [14] Sobrino J A, Jimenez-Munoz J C, Paolini L. Land surface temperature retrieval from Landsat TM 5[J]. Remote Sensing of Environment, 2004, 90(4):434-440.
    [15] 孟宪红, 吕世华, 张宇, 等.使用LANDSAT-5TM数据反演金塔地表温度[J].高原气象, 2005, 24(5):721-726.
    [16] Zhao Chunhong, Jennifer J, Weng Qihao, et al. A geographically weighted regression analysis of the underlying factors related to the surface urban heat island phenomenon[J]. Remote Sensing, 2018, 10(9):1428.
    [17] 覃志豪, 李文娟, 徐斌, 等.陆地卫星TM6波段范围内地表比辐射率的估计[J].国土资源遥感, 2004, 16(3):28-32.
    [18] 谢哲宇, 黄庭, 李亚静, 等.南昌市土地利用与城市热环境时空关系研究[J].环境科学与技术, 2019, 42(S1):241-248.
    [19] 雷金睿, 陈宗铸, 吴庭天, 等.1989-2015年海口城市热环境与景观格局的时空演变及其相互关系[J].中国环境科学, 2019, 39(4):1734-1743.
    [20] 乔治, 黄宁钰, 徐新良, 等.2003-2017年北京市地表热力景观时空分异特征及演变规律[J].地理学报, 2019, 74(3):475-489.
    [21] 成淑艳, 曹生奎, 曹广超, 等.基于高分辨率遥感影像的青海湖沙柳河流域土地覆盖监督分类方法对比[J].水土保持通报, 2018, 38(5):261-268, 353.
    [22] 高静, 龚健, 李靖业."源-汇"景观格局的热岛效应研究:以武汉市为例[J].地理科学进展, 2019, 38(11):1770-1782.
    相似文献
    引证文献
引用本文

刘孟竹,李雅丽,张红娟,王飞枭,裴宏伟.1996-2017年张家口市区景观格局与地表热环境的时空变化[J].水土保持通报,2021,41(6):303-309

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-05-06
  • 最后修改日期:2021-07-20
  • 在线发布日期: 2022-01-06