自然冻融条件下黄土丘陵区不同土地利用方式原状土的抗冲性
作者:
中图分类号:

S157.1;TU111.2+5

基金项目:

国家自然科学基金面上项目“黄土高原冻融对水蚀过程作用机理研究”(41771311),“尼罗河上游丘陵区水土保持与高产高效农业研究”(41561144011); 中国科学院西部之光人才计划(XAB2016B08); 西北农林科技大学大学生创新训练项目“冻融交替对土壤抗蚀性影响研究”(S202010712569)资助


Scourability of Undisturbed Soils of Different Land Use Types in Loess Hilly Region Under Natural Freezing and Thawing Conditions
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 研究冻融对3种土地利用方式(坡耕地、草地和灌木地)土壤抗冲性的影响,旨在为黄土高原季节性冻融区植被恢复建设提供理论依据。[方法] 基于一系列野外自然冻融、野外监测和原状土冲刷试验,以确定冻融对3种土地利用方式土壤抗冲性的影响。[结果] ①相较于坡耕地,草地与灌木地的冻结程度更低,其中,灌木地冻结程度最低,抗冻性最好。②冻融作用不同程度地加剧了土壤流失,降低土体抗冲性,其中草地与灌木的抗冲系数AS(anti-scouribility)明显高于坡耕地,说明在冻融条件下植被覆盖能够有效提升土体抗冻性及土壤抗冲能力。③在草地和灌木地中,冻融前后草地和灌木地的泥沙总流失量增加了31%和16.5%,抗冲系数分别下降了23%和14%,草地在冻融过程中泥沙流失的增加量更高,抗冲系数下降幅度最大。[结论] 在季节性冻融过程中,草地冻结程度更剧烈,抗冲性更差,草地在季节性冻融过程中可能存在更高水土流失风险。

    Abstract:

    [Objective] The effects of freezing and thawing on soil erosion resistance of three land use types (sloping farmland, grassland, and shrub land) were studied in order to provide a theoretical basis for vegetation restoration and construction in the seasonal freezing and thawing area of the Loess Plateau. [Methods] Based on a series of natural freezing and thawing cycles, field monitoring, and undisturbed soil scouring tests, the effects of freezing and thawing on soil erosion resistance of the three aforementioned land use types were determined. [Results] ① Compared with sloping farmland, the degree of freezing for grassland and shrub land was lower, and with shrub land having the lowest freezing degree and the best frost resistance. ② Freezing and thawing aggravates soil loss in varying degrees and reduces soil erosion resistance. The anti-scourability coefficient of grassland and shrub land was significantly higher than that of sloping farmland, indicating that vegetation coverage can effectively improve frost resistance and anti-scourability of soil under freeze-thaw conditions. ③ The total sediment loss before and after freezing and thawing for grassland and shrub land increased by 31% and 16.5%, respectively, and the anti-scourability coefficient decreased by 23% and 14%. The increase of sediment loss in grassland during freezing and thawing was higher, and the anti-scourability coefficient decreased the most. [Conclusion] Due to seasonal freezing and thawing of grassland and shrub land, the degree of grassland freezing is more severe, and the erosion resistance of grassland soil is worse than that of shrub land soil. Grassland may have a higher risk of soil erosion due to the seasonal freezing and thawing process.

    参考文献
    [1] 李强,刘国彬,许明祥,等.黄土丘陵区冻融对土壤抗冲性及相关物理性质的影响[J].农业工程学报,2013,29(17):105-112.
    [2] Wu Xing, Brüggemann N, Gasche R, et al. Environmental controls over soil-atmosphere exchange of N2O, NO, and CO2 in a temperate Norway spruce forest[J]. Global Biogeochemical Cycles, 2010,24(2):21-32.
    [3] 马建业,李占斌,马波,等.黄土区小流域植被类型对沟坡地土壤水分循环的影响[J].生态学报,2020,40(8):2698-2706.
    [4] Liu Chenguang, Li Zhanbin, Fu Suhua, et al. Influence of soil aggregate characteristics on the sediment transport capacity of overland flow[J]. Geoderma, 2020,369:1-8.
    [5] 王贵霞,夏江宝,孙宁宁,等.黄河三角洲引黄灌区不同植被类型的蓄水保土功能研究[J].水土保持学报,2015,29(2):111-116.
    [6] 陈浩.黄土高原退耕还林前后流域土壤侵蚀时空变化及驱动因素研究[D].陕西杨凌:西北农林科技大学,2019.
    [7] 姚珂涵,肖列,李鹏,等.冻融循环次数和土壤含水率对油松林土壤团聚体及有效态微量元素的影响[J].水土保持学报,2020,34(3):259-266.
    [8] Sharratt B S, Lindstrom M J, Benoit G R, et al. Runoff and soil erosion during spring thaw in the Northen U. S. Corn Belt[J]. Journal of Soil and Water Conservation, 2001,55(4):487-494.
    [9] Sun, B Y, Xiao J B, Li Z B, et al. An analysis of soil detachment capacity under freeze-thaw conditions using the Taguchi method[J]. Catena, 2018,162:100-107.
    [10] 肖俊波,孙宝洋,马建业,等.季节性冻融对东柳沟流域风沙土分离能力的影响[J].中国水土保持科学,2017,15(6):1-8.
    [11] Xiao Lie, Zhang Yang, Li Peng, et al. Effects of freeze-thaw cycles on aggregate-associated organic carbon and glomalin-related soil protein in natural-succession grassland and chinese pine forest on the Loess Plateau[J]. Geoderma, 2019,334:1-8.
    [12] Wang Tian, Li Peng, Li Zhanbin, et al. The effects of freeze-thaw process on soil water migration in dam and slope farmland on the Loess Plateau, China[J]. Science of the Total Environment, 2019,666:721-730.
    [13] Bo Lanfeng, Li Zhanbin, Li Peng, et al. Soil freeze-traw and water transport characteristics under different vegetation types in seasonal freeze-traw areas of Loess Plateau[J]. Frontiers in Earth Science, 2021,565.
    [14] Cheng Yuting, Li Peng, Xu Guoce, et al. The effect of soil water content and erodibility on losses of available nitrogen and phosphorus in simulated freeze-thaw conditions[J]. Catena, 2018,166:21-33.
    [15] Perfect E, van Loon W K P, Kay B, et al. Influence of ice segregation and solutes on soil structural stability[J]. Soil Science, 1990,70:571-581.
    [16] 肖俊波,孙宝洋,李占斌,等.冻融循环对风沙土物理性质及抗冲性的影响试验[J].水土保持学报,2017,31(2):67-71.
    [17] 刘雨佳,许秀泉,范昊明,等.东北黑土区横垄坡面融雪期细沟侵蚀特征研究[J].土壤通报,2017,48(3):701-706.
    [18] 胡波,王玉杰,王彬,等.自然降雨条件下结皮层团聚体稳定性变化特征研究[J].农业机械学报,2017,48(6):225-231.
    [19] Guo Weichao, Liu Hongyan, Anenkhonov O A, et al. Vegetation can strongly regulate permafrost degradation at its southern edge through changing surface freeze-thaw processes[J]. Agricultural and Forest Meteorology, 2018,252:10-17.
    [20] 赵亚茹.牡丹岭地区不同土地利用类型下土壤冻融变化特征分析[D].吉林长春:东北师范大学,2014.
    [21] Shur Y L, Jorgenson M T. Patterns of permafrost formation and degradation in relation to climate and ecosystems[J]. Permafrost and Periglacial Processes, 2007,18(1):7-19.
    [22] Chasmer L, Quinton W, Hopkinson C, et al. Vegetation canopy and radiation controls on permafrost plateau evolution within the discontinuous permafrost zone, northwest territories, Canada[J]. Permafrost and Periglacial Processes, 2011,22(3):199-213.
    [23] Lu Jie, Wang Tiehuang, Cheng Wenchieh, et al. Permeability anisotropy of loess under the influence of dry density and freeze-thaw cycles[J]. International Journal of Geomechanics, 2019,19(9):4-19.
    [24] Li Zhenwei, Zhang Guanghui, Geng Ren, et al. Land use impacts on soil detachment capacity by overland flow in the Loess Plateau, China[J]. Catena, 2015,124:9-17.
    [25] 高双,贾燕锋,范昊明,等.冻融作用下东北黑土区不同土地利用类型土壤抗冲性研究[J].水土保持学报,2015,29(6):70-75.
    [26] 白云.祁连山不同植被类型覆盖下冻土水热特征变化研究[D].甘肃兰州:甘肃农业大学,2020.
    [27] Zhang G H, Liu Baoyuan, Nearing M A, et al. Soil Detachment by Shallow Flow[J]. Transactions of the Asae American Society of Agricultural Engineers, 2002,45:351-357.
    [28] Wu Daoyong, Zhou Xiangyang, Jiang Xingyuan. Water and salt migration with phase change in saline soil during freezing and thawing processes[J]. Groundwater, 2018,56(5):742-752.
    [29] Mohammed G A, Hayashi M, Farrow C R, et al. Improved characterization of frozen soil processes in the versatile soil moisture budget model[J]. Canadian Journal of Soil Science, 2013,93(4):511-531.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

柏兰峰,李占斌,马波,肖列.自然冻融条件下黄土丘陵区不同土地利用方式原状土的抗冲性[J].水土保持通报,2022,42(1):49-55,62

复制
分享
文章指标
  • 点击次数:559
  • 下载次数: 883
  • HTML阅读次数: 1333
  • 引用次数: 0
历史
  • 收稿日期:2021-07-31
  • 最后修改日期:2021-10-17
  • 在线发布日期: 2022-03-12