若尔盖高原湿地植物群落结构特征与土壤微生物群落多样性
作者:
中图分类号:

S154.3;X172


Plant Community Structure and Soil Microbial Community Diversity in Zogue Plateau Wetland
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 探究若尔盖高原湿地植物群落(乌拉苔草、木里苔草、花葶驴蹄草、藏嵩草)结构特征、土壤微生物群落多样性的长期变化特征及其二者之间的演化关系,为该地区的植被恢复和生态环境保护提供借鉴。[方法] 结合室内样品分析,连续4 a(2016—2019年)观测了不同植物群落地上和地下各个指标的动态特征。[结果] ①对于α多样性,2016—2019年若尔盖高原湿地植被Shannon-Wiener多样性指数、Margalef丰富度指数、Pielou均匀度指数呈一致的变化规律,均表现为:乌拉苔草>木里苔草>藏嵩草>花葶驴蹄草,随着年份的增加而逐渐增加趋势;而Simpson优势度指数呈相反的变化趋势。对于β多样性,2016—2019年若尔盖高原湿地植被Cody指数呈一致的变化规律,均表现为:乌拉苔草>木里苔草>藏嵩草>花葶驴蹄草,随着年份的增加而逐渐增加趋势;而Sorenson指数呈相反的变化趋势。②2016—2019年土壤有机碳、全氮、全磷和全钾含量呈一致的变化规律,均表现为:乌拉苔草>木里苔草>藏嵩草>花葶驴蹄草,随着年份的增加而逐渐增加趋势;若尔盖高原湿地不同植物群落土壤细菌数量占绝对优势,占微生物总数的70%左右,其次是放线菌,真菌最少;其中细菌数目、真菌数目和放线菌数目均表现为:乌拉苔草>木里苔草>藏嵩草>花葶驴蹄草,随着年份的增加而逐渐增加趋势。③土壤微生物量碳、氮、磷均表现为:乌拉苔草>木里苔草>藏嵩草>花葶驴蹄草,随着年份的增加而逐渐增加趋势;而微生物量磷不同年份之间差异不显著(p>0.05)。④土壤微生物群落均匀度指数(E)、物种丰富度指数(H)、和碳源利用丰富度指数(S)基本表现为:乌拉苔草>木里苔草>藏嵩草>花葶驴蹄草,随着年份的增加而逐渐增加趋势;而优势度指数(Ds)呈相反的变化趋势,不同年份之间差异不显著(p>0.05)。⑤土壤微生物群落多样性与植被多样性具有显著的相关性(p<0.05)。[结论] 若尔盖高原湿地地上植被与地下微生物群落多样性之间呈强耦合关系,并且这种关系并不随时间而改变,二者具有对环境变化响应的统一性。

    Abstract:

    [Objective] The long-term changes of plant community structure (Carex muliensis, Carex meyeriana, Calthascaposa, Kobresia tibetica) and soil microbial community diversity in the Zogue Plateau wetland, and their evolutionary relationships were investigated in order to provide reference for vegetation restoration and ecological environment protection in this area. [Methods] The dynamic characteristics of aboveground and underground indexes of different plant communities were observed in four consecutive years (2016—2019). [Results] ① For plant α diversity, the Shannon-Wiener diversity index, Margalef richness index, and Pielou evenness index showed a consistent change trend that followed the order of Carex meyeriana>Carex muliensis>Kobresia tibetica>Caltha scaposa. However, the Simpson dominance index showed the opposite change trend. For plant β diversity, the Cody index also showed a consistent change trend that followed the order of C. meyeriana>C. muliensis>K. tibetica>C. scaposa, while the Sorenson index changed in the opposite trend. ② The contents of soil organic carbon, total nitrogen, total phosphorus, and total potassium showed a consistent change trend that followed the order of C. meyeriana>C. muliensis>K. tibetica>C. scaposa, and gradually increased with the increasing of years. Soil microorganisms were dominated by bacteria in the Zogue Plateau wetland, accounting for about 70% of the total microbial population, followed by Actinomycetes and fungi. The numbers of bacteria, fungi, and Actinomycetes followed the order of Carex meyeriana>C. muliensis>K. tibetica>C. scaposa, and numbers gradually increased with the increasing of years. ③ Soil microbial biomass carbon, nitrogen, and phosphorus followed the order of C. meyeriana>C. muliensis>K. tibetica>C. scaposa, and values gradually increased with the increasing of years. However, no significant differences were found in microbial biomass phosphorus among different years (p>0.05). ④ Soil microbial evenness index (E), species richness index (H), and carbon source using basic richness index (S) followed the order of C. meyeriana>C. muliensis>K. tibetica>C. scaposa, and values gradually increased with the increasing of years, while the dominance index (Ds) showed the opposite change tend, with no significant difference among different years (p> 0.05). ⑤ Soil microbial community diversity and plant diversity were significantly correlated with each other (p<0.05). [Conclusion] There is a strong coupling between aboveground vegetation diversity and microbial community diversity in the Zogue Plateau wetland, and this coupling do not change with year, thereby indicating a unified response to changing environments.

    参考文献
    [1] Liu Min, Huang Huiqin, Bao Shixiang, et al. Microbial community structure of soils in Bamenwan mangrove wetland[J]. Scientific Reports,2019,9:8406.
    [2] Tang Yushu, Wang Lei, Jia Jianwei, et al. Response of soil microbial community in Jiuduansha wetland to different successional stages and its implications for soil microbial respiration and carbon turnover[J]. Soil Biology and Biochemistry, 2011,43(3):638-646.
    [3] Wertz S, Degrange V, Prosser J I, et al. Decline of soil microbial diversity does not influence the resistance and resilience of key soil microbial functional groups following a model disturbance[J]. Environmental Microbiology, 2007, 9(9):2211-2219.
    [4] Ahn C, Gillevet P M, Sikaroodi M. Molecular characterization of microbial communities in treatment microcosm wetlands as influenced by macrophytes and phosphorus loading[J]. Ecological Indicators, 2007,7(4):852-863.
    [5] Rinklebe J, Langer U. Microbial diversity in three floodplain soils at the Elbe River (Germany)[J]. Soil Biology and Biochemistry, 2006,38(8):2144-2151.
    [6] Ma L, Jiang X, Liu G, et al. Environmental factors and microbial diversity and abundance jointly regulate soil nitrogen and carbon biogeochemical processes in Tibetan wetlands[J]. Environmental Science & Technology, 2020,54(6):3267-3277.
    [7] Huang Laibin, Zhang Guangliang, Bai Junhong, et al. Desalinization via freshwater restoration highly improved microbial diversity, co-occurrence patterns and functions in coastal wetland soils[J]. Science of the Total Environment, 2021,765:142769.
    [8] Zhang Chang, Nie Shuang, Liang Jie, et al. Effects of heavy metals and soil physicochemical properties on wetland soil microbial biomass and bacterial community structure[J].Science of the Total Environment, 2016,557/558:785-790.
    [9] 孟妍君,秦鹏.珠江三角洲滨海湿地土壤微生物群落多样性与养分的耦合关系[J].水土保持研究,2020,27(6):77-84.
    [10] 郭舜,黄启堂.闽江河口湿地植物多样性与土壤养分和微生物因子关联分析[J].水土保持研究,2020,28(3):8-12.
    [11] 张翠萍,李淑英,王蓓,等.六氯苯胁迫下2种湿地植物根际土壤微生物数量与酶活性变化[J].生态与农村环境学报,2018,34(2):177-183.
    [12] 周文昌,崔丽娟,王义飞,等.若尔盖高原泥炭地生态系统碳储量[J]. 生态学杂志,2016,35(8):1981-1987.
    [13] 李斌,陈发军,陶敏,等.夏季若尔盖高寒湿地水生生物群落食物网结构特征[J]. 水生生物学报,2016,40(2):313-320.
    [14] 赵娜娜,宁宇,马骅,等.若尔盖湿地土壤特性空间变化研究[J].水资源与水工程学报,2019,30(1):232-240.
    [15] 赵淑清,方精云,宗占江,等.长白山北坡植物群落组成、结构及物种多样性的垂直分布[J].生物多样性,2004,12(1):164-173.
    [16] 周文昌,崔丽娟,王义飞,等.排水对若尔盖高寒沼泽CO2和CH4排放通量的影响[J].中国环境科学,2019,39(7):3040-3047.
    [17] 唐志尧,方精云,张玲.秦岭太白山木本植物物种多样性的梯度格局及环境解释[J].生物多样性,2004,12(1):115-120.
    [18] 鲍士旦.土壤农化分析[M].北京:科学出版社,2000.
    [19] 张超凡,盛连喜,宫超,等.冻融作用对我国东北湿地土壤碳排放与土壤微生物的影响[J].生态学杂志,2018,37(2):304-311.
    [20] 刘亚军,蔡润发,李赟璟,等.湿地土壤微生物碳源代谢活性对不同水分条件的动态响应:以鄱阳湖为例[J].土壤,2018,50(4):705-711.
    [21] 王娜,高婕,魏静,等.三江平原湿地开垦对土壤微生物群落结构的影响[J].环境科学,2019,4(5):2375-2381.
    [22] 肖烨,黄志刚.湿地土壤有机碳稳定性的微生物学影响机制[J].安徽农业科学,2019,47(20):15-17.
    [23] 高艳娜,戚志伟,仲启铖,等.长期模拟升温对崇明东滩湿地土壤微生物生物量的影响[J].生态学报,2018,38(2):711-720.
    [24] 于昊天,黄时豪,刘亚军,等.鄱阳湖湿地土壤酶及微生物生物量的剖面分布特征[J].环境科学研究,2017,30(11):1715-1722.
    [25] 张洪霞,郑世玲,魏文超,等.水分条件对滨海芦苇湿地土壤微生物多样性的影响[J].海洋科学,2017,41(5):144-152.
    [26] 顾城天,罗彬,王恒,等.若尔盖高原湿地水质演变特征及氮磷累积效应[J].水土保持研究,2020,27(4):47-53.
    [27] 李秀清,李晓红.鄱阳湖湿地不同植物群落土壤养分及微生物多样性研究[J].生态环境学报,2019,28(2):385-394.
    [28] 梁春玲.洞庭湖湿地植物群落多样性及土壤有机碳储量研究[J].水土保持研究,2020,27(6):66-71.
    [29] 梁香寒,张克斌,乔厦.半干旱黄土区柠条林土壤水分和养分与群落多样性关系[J].生态环境学报,2019,28(9):1748-1756.
    [30] 董李勤,杨文,姚鹏举,等.若尔盖高原湿地木里苔草生理生态特征对水深梯度的响应[J].生态学报,2020,40(2):590-598.
    [31] 金章利,刘高鹏,周明涛,等.山地草地土壤微生物群落对土壤养分的指示作用[J].西南农业学报,2019,32(11):2638-2645.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

汤木子.若尔盖高原湿地植物群落结构特征与土壤微生物群落多样性[J].水土保持通报,2022,42(1):106-113

复制
分享
文章指标
  • 点击次数:204
  • 下载次数: 625
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-06-04
  • 最后修改日期:2021-10-19
  • 在线发布日期: 2022-03-12