DEM分辨率对集约化蔗区小流域水文连通性指数的影响
作者:
中图分类号:

P333;S126

基金项目:

国家自然科学基金项目“酸性富硒土壤硒素赋存特征及其有效化过程中微生物作用及机制”(41967006); 广西科技重大专项“集约化农区面源污染综合防控体系与示范”(AA17204078); 广西科技重大专项(桂科AA17202005-1)


Effects of DEM Resolution on Hydrological Connectivity Index of Small Watershed in Intensive Sugarcane Area
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 探究集约化蔗区小流域地表微地形特征参数与水文连通性指数随DEM不同分辨率的变化以及水文连通性指数的最佳DEM分辨率,为后续水文连通性相关研究、农业面源污染及土壤侵蚀等研究提供理论依据与参考。[方法] 基于ArcGIS与无人机高分辨率影像,利用分区统计等方法,以中国南方集约化蔗区小流域为例,研究了DEM不同分辨率(分别为0.05,0.1,0.2,0.5,1,2,5 m)对地表微地形特征参数(坡度、坡长、表面粗糙度和地表粗糙度)以及水文连通性指数IC(index of hydrological connectivity)的影响。[结果] ①随着像元尺寸(5~0.05 m)的减小,平均坡度(S)、平均表面粗糙度(SR)分别增加了29.13%与1.62%,平均地表粗糙度SDE与平均坡长因子L分别减少了98.72%与72.09%。新植甘蔗、宿根甘蔗、甘蔗西瓜间作、桉树的平均坡度(S)呈增加趋势,坡长因子(L)呈减小趋势、表面粗糙度(SR)先减小(5~1 m)后增大(1~0.05 m),地表粗糙度SDE均呈减小趋势,道路的坡度(S)与表面粗糙度(SR)均先减小(5~1 m)后增大(1~0.05 m),河道的坡长因子先增加(5~2 m)后减小(2~0.05 m)。②水文连通性指数IC均值表现为先增加(5~0.2 m)后减小(0.2~0.05 m),不同土地利用类型的IC均值差异在0.5 m时达到最大(34.72%),0.1 m分辨率下IC均值排序为:河道>新植甘蔗>甘蔗西瓜间作>宿根甘蔗>道路>桉树。③桉树、道路、河道最佳DEM分辨率为0.5 m,新植甘蔗、宿根甘蔗、甘蔗西瓜间作最佳DEM分辨率为0.1 m,集约化蔗区小流域最佳DEM分辨率为0.1 m。[结论] DEM分辨率显著影响IC值大小与地表微地形特征参数,且不同土地利用类型所受影响不同。0.1 m是集约化蔗区小流域水文连通性及地表微地形表征的最佳DEM分辨率。

    Abstract:

    [Objective] The response of surface microtopography characteristic index, and hydrological connectivity (IC) index to different resolutions of digital elevation model (DEM) was studied, and the best DEM resolution of IC was determined in a small watershed of an intensive sugarcane production area in order to provide a theoretical basis and reference for subsequent research on hydrological connectivity, agricultural non-point source pollution, and soil erosion. [Methods] The effects of different resolutions of DEM (0.05, 0.1, 0.2, 0.5, 1, 2, and 5 m) on surface microtopography characteristics 〔slope (S), slope length (L), surface roughness (SR), standard deviation of elevation (SDE), and IC〕 were studied in an intensive sugarcane planting area in Southern China using ArcGIS and high-resolution images from an unmanned aerial vehicle (UAV). [Results] ① A decrease in pixel size (5—0.05 m) increased mean S and SR by 29.13% and 1.62%, respectively, but decreased mean SDE and L by 98.72% and 72.09%, respectively. The decreased resolution increased the mean S of newly planted sugarcane, perennial sugarcane, newly planted sugarcane+watermelon, and Eucalyptus, but decreased their L. In contrast, their SR first decreased at 5—1 m and then increased at 1—0.05 m, while SDE decreased generally. However, the S and SR of the road decreased first at 5—1 m and then increased at 1—0.05 m, while L of the river increased first at 5—2 m, and thereafter decreased at 2—0.05 m. ② Mean IC increased first at 5—0.2 m, and then decreased at 0.2—0.05 m. The difference in mean IC of different land use types reached its maximum value (34.72%) at 0.5 m. At 0.1 m resolution, IC followed the order of river>newly planted sugarcane>newly planted sugarcane+watermelon>perennial sugarcane>road>Eucalyptus. The best DEM resolution for Eucalyptus, roads, and rivers was 0.5 m, while 0.1 m resolution was best suited for newly planted sugarcane, perennial sugarcane, and newly planted sugarcane+watermelon. ③ The best DEM resolution for a small watershed in an intensive sugarcane area was 0.1 m. [Conclusion] DEM resolution had a significant effect on IC and index of surface microtopography characteristics, with varied effects for different land use types. The optimal DEM resolution of 0.1 m was best suitable for the characterization of a small watershed in an intensive sugarcane area.

    参考文献
    [1] Garcia Moreno R, Diaz Alvarez M C, Saa Requejo A, et al. Multiscaling analysis of soil roughness variability[J]. Geoderma, 2010,160(1):22-30.
    [2] Ariza-Villaverde A B, Jiménez-Hornero F J, Gutiérrez de Ravé E. Influence of DEM resolution on drainage network extraction:A multifractal analysis[J]. Geomorphology, 2015,241:243-254.
    [3] Poulter B, Halpin P N. Raster modelling of coastal flooding from sea-level rise[J]. International Journal of Geographical Information Science, 2008,22(2):167-182.
    [4] Habtezion N, Tahmasebi Nasab M, Chu Xuefeng. How does DEM resolution affect microtopographic characteristics, hydrologic connectivity, and modelling of hydrologic processes?[J]. Hydrological Processes, 2016,30(25):4870-4892.
    [5] Cavazzi S, Corstanje R, Mayr T, et al. Are fine resolution digital elevation models always the best choice in digital soil mapping?[J]. Geoderma, 2013,195/196:111-121.
    [6] Passalacqua P, Belmont P, Staley D M, et al. Analyzing high resolution topography for advancing the understanding of mass and energy transfer through landscapes:A review[J]. Earth-Science Reviews, 2015,148:174-193.
    [7] Yang Jun, Chu Xuefeng. Effects of DEM resolution on surface depression properties and hydrologic connectivity[J]. Journal of Hydrologic Engineering, 2013,18(9):1157-1169.
    [8] Cantreul V, Bielders C, Calsamiglia A, et al. How pixel size affects a sediment connectivity index in central Belgium[J]. Earth Surface Processes and Landforms, 2018,43(4):884-893.
    [9] López-Vicente M, Álvarez S. Influence of DEM resolution on modelling hydrological connectivity in a complex agricultural catchment with woody crops[J]. Earth Surface Processes and Landforms, 2018,43(7):1403-1415.
    [10] Li Yangrui, Yang Litao. Sugarcane agriculture and sugar industry in China[J]. Sugar Tech, 2015,17(1):1-8.
    [11] Bordonal R D O, Carvalho J L N, Lal R, et al. Sustainability of sugarcane production in Brazil:A review[J]. Agronomy for Sustainable Development, 2018,38(2):1-23.
    [12] 孙丽娅,上野正实,永田雅辉.不同栽培法和收割期对甘蔗单产及含糖量影响的分析[J].中国生态农业学报,2009,17(5):992-996.
    [13] Li Yong, Mo Yaqi, Are K S, et al. Sugarcane planting patterns control ephemeral gully erosion and associated nutrient losses:Evidence from hillslope observation[J]. Agriculture, Ecosystems & Environment, 2021,309:107289.
    [14] Borselli L, Cassi P, Torri D. Prolegomena to sediment and flow connectivity in the landscape:A GIS and field numerical assessment[J]. Catena, 2008,75(3):268-277.
    [15] 蔡崇法,丁树文,史志华,等.应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量的研究[J].水土保持学报,2000,14(2):19-24.
    [16] 林杰,张金池,顾哲衍,等.基于叶面积指数的植被覆盖管理措施因子C的遥感定量估算[J].林业科学,2013,49(2):86-92.
    [17] 刘时城.延河流域不同尺度水文连通性研究[D].陕西杨凌:西北农林科技大学,2017.
    [18] Meyer G E, Neto J C. Verification of color vegetation indices for automated crop imaging applications[J]. Computers and Electronics in Agriculture, 2008,63(2):282-293.
    [19] 符素华,刘宝元,周贵云,等.坡长坡度因子计算工具[J].中国水土保持科学,2015,13(5):105-110.
    [20] Kamphorst E C, Jetten V, Guérif J, et al. Predicting depressional storage from soil surface roughness[J]. Soil Science Society of America Journal, 2000,64(5):1749-1758.
    [21] Brandt S A. Modeling and visualizing uncertainties of flood boundary delineation:Algorithm for slope and DEM resolution dependencies of 1D hydraulic models[J]. Stochastic Environmental Research and Risk Assessment, 2016,30(6):1677-1690.
    [22] Bracken L J, Croke J. The concept of hydrological connectivity and its contribution to understanding runoff-dominated geomorphic systems[J]. Hydrological Processes, 2007,21(13):1749-1763.
    [23] 王盛萍,姚安坤,赵小婵.基于人工降雨模拟试验的坡面水文连通性[J].水科学进展,2014,25(4):526-533.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

康振威,明雪,黄智刚. DEM分辨率对集约化蔗区小流域水文连通性指数的影响[J].水土保持通报,2022,42(1):198-207

复制
分享
文章指标
  • 点击次数:498
  • 下载次数: 728
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-08-23
  • 最后修改日期:2021-10-10
  • 在线发布日期: 2022-03-12