崩岗土体物理化学性质及其内部分异——以广东省德庆县3个典型崩岗为例
作者:
中图分类号:

P934;S157.1

基金项目:

国家自然科学基金项目“模拟降雨条件下华南崩岗泥砂流产流输沙试验研究”(41971006)


Physical and Chemical Properties of Benggang Soils and Their Interior Differentiation —Three Cases of Typical Benggangs at Deqing County, Guangdong Province
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 研究崩岗土体物理性质的内部分异和崩岗土体化学物质组成,为更好地理解崩岗的侵蚀过程提供理论参考。[方法] 以广东省德庆县3个典型崩岗为例,采用筛分法、烘干法、激光粒度分析、液塑限分析、X射线衍射分析和X射线荧光光谱分析,对崩岗不同地貌部位的土体物理性质、矿物组成和化学元素进行测定。[结果] ①崩壁土体容重略大于崩积体、沟道和洪积扇的土体容重;崩壁和崩积体的含水率和界限含水率大于沟道和洪积扇的土体含水率和界限含水率。②崩岗土体中值粒径表现为:崩壁<崩积体<沟道<洪积扇;崩壁和崩积体土体颗粒级配曲线呈双峰型,沟道和洪积扇土体颗粒级配曲线呈单峰型。③崩岗土体的矿物成分以黏土矿物高岭石为主,石英和白云母次之;化合物以SiO2含量最多,其次为Al2O3;化学元素以Ti含量最高,S含量次之。[结论] 崩岗不同地貌部位的土体物理性质具有一定的分异现象,水力—重力复合侵蚀作用机制是这一内部分异形成的原因。强化学风化作用下,崩岗土体黏土矿物以高岭石为主,化学物质在崩岗内部没有出现明显的元素迁移和富集现象。

    Abstract:

    [Objective] The physical properties and their internal differentiations, and the mineral compositions and chemical elements of Benggang soil were studied in order to provide a theoretical reference for a better understanding on the benggang erosion processes. [Methods] Taking three typical Benggangs in Deqing County, Guangdong Province as examples, the methods of screening, drying, laser particle size analysis, liquid plastic limit analysis, X-ray diffraction analysis, and X-ray fluorescence spectrometry were used, to measure the basic physical properties, mineral composition and chemical elements in the different landform positions of the Benggang soil. [Results] ① Soil bulk densities of the headwalls were slightly larger than those of the colluvium, gully and diluvial fan. The water contents and limit water content of headwalls and colluvium were greater than those of the gully and diluvial fan. ② The median particle sizes of the soils were headwall < colluvium < gully sediments < diluvium. Grain size distributions of the headwall and colluvium were bimodal, and those of the gully sediments and diluvium were single peak. ③ The mineral composition of the soils was mainly clay mineral Kaolinite, and followed by Quartz and Muscovite. The chemical components contained SiO2 and Al2O3, which were the top two in content. The content of Ti was the highest, and followed by S. [Conclusion] The physical properties of soil in different topographic position of the Benggangs displayed a certain differentiation phenomena from headwall to diluvium, and the hydraulic gravity composite erosion mechanism was the reason for the formation of this internal differentiation. Under strong chemical weathering, the composition of clay minerals was mainly composed of Kaolinite, and there was no obvious element migration and enrichment in the Benggangs.

    参考文献
    [1] Xu Jiongxin. Benggang erosion: The influencing factors [J]. Catena, 1996,27(3):249-263.
    [2] 刘希林.全球视野下崩岗侵蚀地貌及其研究进展[J].地理科学进展,2018,37(3):342-351.
    [3] 李思平.广东崩岗形成的岩土本质[J].福建水土保持,1991(4):28-33.
    [4] 谢建辉.德庆县崩岗治理及其防治对策[J].亚热带水土保持,2006,18(2):52-54.
    [5] 谢炎敏.崩壁土壤界限含水率特征及影响因子研究[J].人民珠江,2017,38(12):96-99.
    [6] 邓羽松,丁树文,蔡崇法,等.鄂东南崩岗洪积扇土壤物理性质空间分异特征[J].中国农业科学,2014,47(24):4850-4857.
    [7] 蒋芳市,黄炎和,林金石,等.崩岗崩积体土壤渗透特性分析[J].水土保持学报,2013,27(3):49-54.
    [8] 蒋芳市,黄炎和,林金石,等.花岗岩崩岗崩积体颗粒组成及分形特征[J].水土保持研究,2014,21(6):175-180.
    [9] 刘希林,张大林,贾瑶瑶.崩岗地貌发育的土体物理性质及其土壤侵蚀意义:以广东五华县莲塘岗崩岗为例[J].地球科学进展,2013,28(7):802-811.
    [10] 刘希林,邱锦安,张大林.崩岗侵蚀区崩壁土体湿化机理及影响因素分析[J].水土保持学报,2016,30(4):80-84.
    [11] 吴志峰,王继增.华南花岗岩风化壳岩土特性与崩岗侵蚀关系[J].水土保持学报,2000,14(2):31-35.
    [12] Ban J D, Moon S W, Lee S W, et al. Physical and chemical weathering indices for biotite granite and granitic weathered soil in Gyeongju [J]. The Journal of Engineering Geology, 2017,27(4):451-462.
    [13] Kim S, Park H. The relationship between physical and chemical weathering indices of granites around Seoul, Korea [J]. Bulletin of Engineering Geology and the Environment, 2003,62(3):207-212.
    [14] 郝芮,邓羽松,娜荷芽,等.鄂东南花岗岩崩岗剖面土体风化特征[J].中国水土保持科学,2018,16(4):1-8.
    [15] Jin Changxing. The development of Benggang in Guangdong Province, South China [J]. International Journal of Sediment Research, 1994,9(S):46-56.
    [16] 黄少敏,黄山.广东的崩岗灾害地貌[J].热带地貌,1992,13(1):115-122.
    [17] 广东省土壤普查办公室.广东土壤[M].北京:科学出版社,1993.
    [18] 德庆县地方志编纂委员会.德庆县志(1979—2000)[M].广东 广州:广东人民出版社,2013.
    [19] 刘强,穆兴民,高鹏,等.土壤水力侵蚀对土壤质量理化指标影响的研究综述[J].水土保持研究,2020,27(6):386-392.
    [20] 刘希林,张大林.基于三维激光扫描的崩岗侵蚀的时空分析[J].农业工程学报,2015,31(4):204-211.
    [21] 陈晓安,杨洁,熊永,等.红壤区崩岗侵蚀的土壤特性与影响因素研究[J].水利学报,2013,44(10):1175-1181.
    [22] 陈雨波,朱伯龙.中国土木建筑百科辞典·建筑结构[M].北京:中国建筑工业出版社,1999.
    [23] 尚彦军,吴宏伟,曲永新.花岗岩风化程度的化学指标及微观特征对比:以香港九龙地区为例[J].地质科学,2001,36(3):279-294.
    [24] 徐蕾,袁会敏,江荣风,等. X射线衍射法在土壤黏粒矿物测定方面的研究进展[J].光谱学与光谱分析,2020,40(4):1227-1231.
    [25] 李国武,廖立兵. X射线衍射方法与应用[M].北京:地质出版社,2008.
    [26] 蒋芳市,黄炎和,林金石,等.多场次降雨对崩岗崩积体细沟侵蚀的影响[J].中国水土保持科学,2014,12(6):1-7.
    [27] 张大林,刘希林.崩岗泥砂流粒度特性及流体类型分析:以广东五华县莲塘岗崩岗为例[J].地球科学进展,2014,29(7):810-818.
    [28] 陈昌盛,谢财富,费光春.广东三岗山二长花岗岩体形成时代、地球化学特征及地质意义[J].矿物岩石地球化学通报,2021,40(4):925-937.
    [29] 熊平生,袁航.花岗岩风化壳崩岗侵蚀剖面风化强度和粒度分布特征[J].水土保持研究,2018,25(2):157-162.
    [30] 尚彦军,王思敬,岳中琦,等.全风化花岗岩孔径分布—颗粒组成—矿物成分变化特征及指标相关性分析[J].岩土力学,2004,25(10):1545-1550.
    [31] 秦效荣,姚玉增,何宏平,等.广东梅州花岗岩风化壳剖面的可见光—短波红外反射光谱特征及其对风化强度的指示[J].地球化学,2020,49(4):422-434.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

卓瑞娜,刘希林,岳梦.崩岗土体物理化学性质及其内部分异——以广东省德庆县3个典型崩岗为例[J].水土保持通报,2022,42(2):38-45,52

复制
分享
文章指标
  • 点击次数:906
  • 下载次数: 880
  • HTML阅读次数: 1010
  • 引用次数: 0
历史
  • 收稿日期:2021-08-29
  • 最后修改日期:2021-10-25
  • 在线发布日期: 2022-05-26