淮南典型矿区不同塌陷年龄沉陷塘水中微量元素浓度特征及健康风险
作者:
中图分类号:

X52, X82

基金项目:

国家自然科学基金项目“生物炭重构蚓触圈微环境下污泥—蚯蚓多界面重金属迁移转化机理研究”(51878004);国家自然科学基金项目(51978001);中国工程院战略研究与咨询项目(2021-XZ-17);金属矿山安全与健康国家重点实验室开放基金项目(2020-JSKSSYS-02);安徽高校协同创新项目(GXXT-2020-075);研究生创新项目(2020CX2006)


Characteristics of Trace Element Concentration and Health Risk in Subsidence Ponds of Different Subsidence Ages in Huainan Mining Area
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [46]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    [目的] 研究淮南典型矿区不同年龄沉陷塘水体5种微量元素Mn,Ni,V,As和Cr浓度变化特征及来源,旨在为采煤沉陷区微量元素风险管控、沉陷塘水环境污染治理提供科学参考和依据。[方法] 测定水样的微量元素Mn,Ni,V,As和Cr的含量,运用Pearson相关性和主成分析法识别微量元素的来源,同时采用美国环境保护局(USEPA)推荐的健康风险模型对其进行健康风险评价。[结果] ①沉陷塘水体微量元素As和Cr的含量符合中国地表水Ⅱ类水质标准,元素Mn,Ni和V的含量在中国地表水环境质量标准限值之内。②不同塌陷年龄沉陷水体微量元素总体变化趋势表现为:青年矿>老年矿>中年矿,随塌陷年龄增加,研究区沉陷水体微量元素含量整体上呈下降趋势。③不同年龄塌陷水体通过饮水途径摄入的非致癌健康风险不会对人体健康产生影响。不同年龄塌陷水体致癌元素(As,Cr,Ni)成人和儿童年均致癌健康风险值在可接受范围内,其中青年矿元素As的致癌风险值相对较大,接近USEPA限值。[结论] 受采煤活动影响,煤矿开采初期,沉陷水体微量元素浓度较大,应做好敏感微量元素治理和安全风险管控;随塌陷年龄越加,沉陷塘水体的微量元素对人体产生的健康风险越小。

    Abstract:

    [Objective] The variation characteristics and sources of five trace elements Mn, Ni, V, As and Cr in subsidence ponds of different ages in typical mining areas in Huainan were studied in order to provide scientific reference and basis for the risk management, trace elements control in subsidence ponds from coal mining subsidence areas. [Methods] The contents of trace elements Mn, Ni, V, As and Cr in the water samples were determined by ICP-MS. The sources of trace elements were evaluated by pearson correlation and principal component analysis. Meanwhile, the health risk assessment model recommended by the United States Environmental Protection Agency (USEPA) was used to assess the health risks of the elements in subsidence ponds. [Results] ① The contents of trace elements Mn, Ni and V in subsidence pond water with different collapse ages were in line with the limits of Chinese surface water environmental quality standards, and the contents of As and Cr met the water quality standards classⅡof China surface water. ② The general trend of trace elements in subsidence water showed as: young mine> old mine> middle-aged mine. The contents of trace elements in the subsidence decreased with the increasing age of subsidence ponds. ③ The non-carcinogenic health risk of subsidence water of different ages through drinking water intake would not affect human health. While the carcinogenic elements (As, Cr, Ni) in water bodies of different ages, their average annual carcinogenic health risk values for adult and children was within the acceptable range. Among them, the carcinogenic risk value of As in young mine was much higher, which was close to the USEPA limit. [Conclusion] Due to the coal mining activities, the concentrations of trace elements in the subsidence water reaches the maximum values in the initial stage of coal mining. Therefore, it is necessary to control the risk from sensitive trace elements during initial period of coal mining. The health risk caused by trace elements in the water of subsidence ponds decreased with the increasing subsidence age.

    参考文献
    [1] 郭家新,胡振琪,袁冬竹,等. 黄河流域下游煤矿采煤塌陷区耕地破碎化动态演变:以山东济宁市为例[J]. 煤炭学报,2021,46(9): 3039-3055.
    [2] 裴文明.淮南潘谢矿区生态环境动态监测及预警研究[D].江苏 南京:南京大学,2016.
    [3] 任永乐,董少春,姚素平.淮南塌陷塘重金属空间分布特征研究[J].煤田地质与勘探,2018,46(1):125-134.
    [4] Qiu Huili, Gui Herong, Song Qixiang. Human health risk assessment of trace elements in shallow groundwater of the Linhuan coal-mining district, Northern Anhui Province, China [J]. Human and Ecological Risk Assessment, 2018,24(5):1342-1351.
    [5] Lu Lanlan, Liu Guijian, Wang Jie, et al. Accumulation and health risk assessment of trace elements in Carassius auratus gibelio from subsidence pools in the Huainan coalfield in China [J]. Environmental Monitoring and Assessment, 2017,189(9):479.
    [6] 刘伟,刘胜华,秦文,等.贵州煤矿集中开采区地表水重金属污染特征[J].环境化学,2020,39(7):1788-1799.
    [7] 范廷玉,王顺,张梅丽,等.淮南煤矿采空沉积区重金属生态危害研究[J].湖南城市学院学报(社会科学版),2015,24(3):93-95.
    [8] Li Jun, Gui Herong, Hu Rongjie, et al. Analysis of heavy metal sources and health risk assessment of typical coal mine collapsed lakes in Huaibei coalfield, Anhui Province, China [J]. Polish Journal of Environmental Studies, 2020, 29(5):3193-3202.
    [9] 张维翔.淮南高潜水位采煤沉陷区水质特征及变化趋势[D].安徽 合肥:安徽大学,2019.
    [10] 徐仲雨.淮南新庄孜煤矿区表生环境微量元素分布规律及环境评价[D].安徽 合肥:中国科学技术大学,2018.
    [11] Hu Yunhu, Dong Zhongbing, Liu Guijian. Distribution and potential ecological risk of heavy metals accumulated in subsidence lakes formed in the Huainan Coalfield, China[J]. Environmental Forensics, 2017,18(4):251-257.
    [12] 徐鑫,易齐涛,王晓萌,等.淮南矿区小型煤矿塌陷湖泊浮游植物群落结构特征[J].水生生物学报,2015,39(4):740-750.
    [13] 师环环,潘羽杰,曾敏,等. 雷州半岛地下水重金属来源解析及健康风险评价[J]. 环境科学, 2021,42(9):4246-4256.
    [14] 马莉,桂和荣.皖北朱仙庄矿塌陷湖水域重金属含量特征及其源解析[J].地球与环境,2017,45(3):277-282.
    [15] 车飞.辽宁省沈抚污灌区多介质重金属污染的人体健康风险评价[D].北京:中国环境科学研究院,2009.
    [16] Da Silva Bonifácio A, de Lima Brum R, Tavella R A, et al. Human health risk assessment of metals and anions in surface water from a mineral coal region in Brazil[J]. Environmental Monitoring and Assessment, 2021,193(9):567.
    [17] USEPA.Risk assessment guidance for superfund: Human health evaluation manual(Part E):Supplemental guidance for dermal risk assessment)[R].Office of Superfund Remediation and Technology Innovation U.S, Washington D C, 2009.
    [18] USEPA.Risk Assessment Guidance for Superfund (Volume Ⅰ): Human Health Evaluation Manual(Part A) [R].United States Environmental Protection Agency Washington D C, 1989.
    [19] 环境保护部.中国人群暴露参数手册(概要)[M].北京:中国环境出版社,2016.
    [20] 段小丽,王宗爽,王贝贝,等.我国北方某地区居民饮水暴露参数研究[J].环境科学研究,2010,23(9):1216-1220.
    [21] WHO. Guidelines for Drinking Water Quality [M]. 4th edition. Switzerland: Geneva, 2017.
    [22] 王菲菲,王先良,段小丽,等.比较分析各国水质标准中重金属指标[C].广西 南宁:2012中国环境科学学会学术年会,2012.
    [23] 王文军,张璟,张春芝,等.济宁市采煤塌陷区水体重金属含量及煤、煤矸石淋溶试验研究[J].中国卫生检验杂志,2013,23(5):1142-1144.
    [24] 蔡月,李小平,赵亚楠,等.蒙陕大型煤矿开采区水质化学特征与健康风险[J].生态学杂志,2018,37(2):482-491.
    [25] Neogi B, Tiwari A K, Singh A K, et al. Evaluation of metal contamination and risk assessment to human health in a coal mine region of India: A case study of the North Karanpura coalfield [J]. Human and Ecological Risk Assessment: An International Journal, 2018,24(8):2011-2023.
    [26] Chudy K, Marszalek H, Kierczak J. Impact of hard-coal waste dump on water quality: A case study of Ludwikowice Klodzkie(Nowa Ruda Coalfield, SW Poland) [J]. Journal of Geochemical Exploration, 2014,146(8).127-135.
    [27] 国家环境保护局.地表水环境质量标准(GB3838-2002)[S].北京:中国环境科学出版社,2002.
    [28] 胡广青.淮南煤田煤中典型有害元素的环境地球化学及洁净等级评价[D].安徽 合肥:中国科学技术大学,2019.
    [29] 付彪.煤加工利用过程中有害微量元素的迁移转化行为研究[D].安徽 合肥:中国科学技术大学,2019.
    [30] 郑以梅,郑刘根,李立园,等.淮北低硫燃煤电厂粉煤灰的理化特征[J].环境化学,2017,36(2):309-315.
    [31] 熊鸿斌,胡海文,王振祥,等.淮南煤矿区土壤重金属污染分布特征及污染溯源研究[J].合肥工业大学学报(自然科学版),2015,38(5):686-693.
    [32] 陈军.安徽省淮南潘一矿采煤塌陷区水体重金属污染分析与评价[D].江苏 南京:南京大学,2017.
    [33] 解兴伟,袁华茂,宋金明,等.东海季节性低氧海区柱状沉积物中氧化还原敏感元素对沉积环境变化的响应[J].海洋学报,2020,42(2):30-43.
    [34] 金圣圣,张丽梅,贺纪正.锰氧化物与环境中有机物的作用及其在环境修复中的应用[J]. 环境科学学报, 2008, 28(12): 2394-2403.
    [35] 卢岚岚.两淮矿区表生环境中微量元素的环境生物地球化学研究[D].中国科学技术大学,2017.
    [36] 陈美玉,周雅琪,黄佳茵,等.水生生物重金属富集规律研究[J].食品安全质量检测学报,2019,10(8):2085-2091.
    [37] 谷得明.煤矸石堆存对地表与浅层地下水环境的影响研究[D].安徽理工大学,2015.
    [38] Santana C S, Montalván Olivares D M, Silva V H C, et al. Assessment of water resources pollution associated with mining activity in a semi-arid region [J]. Journal of Environmental Management, 2020,273(11):1148.
    [39] 费志军,王柱红,唐杨.阿哈湖水体丰枯水期重金属含量特征与来源解析[J].地球与环境,2021,49(1):42-50.
    [40] 郑刘根,丁帅帅,刘丛丛,等.不同类型煤矸石中环境敏感性微量元素淋滤特性[J].中南大学学报(自然科学版),2016,47(2):703-710.
    [41] 吴文涛,冉祥滨,李景喜,等.长江水体常量和微量元素的来源、分布与向海输送[J].环境科学,2019,40(11):4900-4913.
    [42] Camur D, Topbas M, Ìlter H,et al. Heavy metals and trace elements in whole-blood samples of the fishermen in Turkey: The fish/ermen heavy metal study(FHMS) [J]. Environmental Management,2021,193(9):567.
    [43] Caggiano R, Sabia S, Speranza A. Trace elements and human health risks assessment of finer aerosol atmospheric particles(PM1) [J]. Environmental Science and Pollution Research, 2019,26(36):36423-36433.
    [44] 吕占禄,张晗,张金良,等.沟塘水及其周边浅层地下水中重金属污染特征与健康风险评价[J].环境工程技术学报,2020,10(6):971-978.
    [45] Chen Guangzhou, Wang Xingming, Wang Ruwei, et al. Health risk assessment of potentially harmful elements in subsidence water bodies using a Monte Carlo approach: An example from the Huainan coal mining area, China [J]. Ecotoxicology and Environmental Safety, 2019,171(4).737-745
    [46] 黄宏伟,肖河,王敦球,等. 漓江流域水体中重金属污染特征及健康风险评价[J]. 环境科学, 2021,42(4): 1714-1723.
    相似文献
    引证文献
引用本文

程晓静,王兴明,储昭霞,王运敏,范廷玉,徐晓平.淮南典型矿区不同塌陷年龄沉陷塘水中微量元素浓度特征及健康风险[J].水土保持通报,2022,42(2):74-81,88

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-09-08
  • 最后修改日期:2021-11-01
  • 在线发布日期: 2022-05-26