沙漠腹地绿洲植被覆盖度提取及植被指数优选
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP79,Q948

基金项目:

国家自然科学基金项目"干旱流域下游河道地表水文过程及地下水时空响应研究"(41961003);国家自然科学基金联合重点支持项目"地表水、浅层地下水对沙漠腹地天然绿洲植被格局影响机制研究"(U1703237)


Extraction of Vegetation Cover and Optimization of Vegetation Indices in a Desert Hinterland Oasis
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    [目的] 对沙漠腹地绿洲植被覆盖度提取及植被指数优选进行分析和研究,为该区选取最优植被指数反演极端干旱区绿洲植被覆盖状况提供科学依据。 [方法] 选取塔克拉玛干沙漠腹地达里雅布依绿洲天然植被作为研究对象,以无人机航拍样地影像获取的植被覆盖度为基准,采用Sentinel-2B卫星影像提取多种典型植被指数,运用回归统计方法建立植被指数-植被覆盖度统计模型,在卫星像元尺度上确定反演干旱绿洲覆盖度的最优植被指数。 [结果] ①利用Image J软件提取样方植被覆盖度精度较高,总体精度可达88.67%。 ②土壤调节型植被指数(SAVI,MSAVI)在标准回归系数、确定系数评价指标中表现良好,指示极端干旱区天然植被覆盖变化有较好的适用性。 [结论] 在极端干旱区,Image J提取稀疏植被效果较好,SAVI,MSAVI更适合绿洲植被覆盖变化研究。

    Abstract:

    [Objective] The extraction of vegetation cover and optimization of vegetation indices in desert hinterland oasis were analyzed and studied in order to providing scientific basis for select the optimal vegetation indices to invert the vegetation cover status of extreme arid zone oasis. [Methods] Natural vegetation cover data from the Dariyabui Oasis in the hinterland of the Taklamakan Desert were obtained from UAV aerial photography sample images and used as the benchmark. A variety of typical vegetation indices were extracted from Sentinel-2B satellite images, and a vegetation index-vegetation cover statistical model was established using regression statistics to determine the optimal vegetation index for inversion to quantify arid oasis vegetation cover at the satellite image element scale. [Results] ① The accuracy of vegetation cover of the extracted samples using Image J software was high, and the overall accuracy reached 88.67%. ② The soil-regulated vegetation indices (SAVI, MSAVI) performed well as shown by standard regression coefficients and coefficients of determination, and had good applicability in reflecting natural vegetation cover changes in extreme arid zones. [Conclusion] In an extreme arid zone, Image J software did well in extracting sparse vegetation cover, and SAVI and MSAVI are the more suitable vegetation indices for oasis vegetation cover change studies.

    参考文献
    相似文献
    引证文献
引用本文

王宁,周明通,魏宣,郭玉川.沙漠腹地绿洲植被覆盖度提取及植被指数优选[J].水土保持通报,2022,42(6):197-205,213

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-03-02
  • 最后修改日期:2022-04-20
  • 录用日期:
  • 在线发布日期: 2023-02-13
  • 出版日期: 2022-12-20