不同生态修复措施对藏东南工程边坡植被重建作用
作者:
作者单位:

成都理工大学旅游与城乡规划学院

基金项目:

国家重大工程建设技术服务项目“雅江中游电站受损创面生态修复技术体系研究与应用项目”(JC2020/D02)、国家重大工程服务项目“YX截弯引水发电工程区生态地质环境评价与生态修复技术研究” 、“科技部第二次青藏高原综合科学考察研究”(2019QZKK0301)、“国家自然科学基金”(31860123、31560153)、“高海拔地区水电工程智能生态环境保护与水土保持关键技术研究”(JC2022/D01)资助


Effect of Different Ecological Restoration Measures on the Reconstruction of Slope Vegetation in Southeast Tibetan Engineering
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [53]
  • | | | |
  • 文章评论
    摘要:

    [目的] 评价生态恢复过程中环境因素对边坡植物群落的影响,为藏东南工程扰动区生态恢复研究提供参考。[方法] 以藏东南新修派墨公路为研究对象,基于沿线边坡生态恢复植物群落调查,分析群落盖度、物种多样性指数(Shannon-Wiener指数、Simpson多样性指数、Margalef丰富度指数、Pielou均匀度指数)、群落加权性状值(比叶面积、叶干物质含量、叶氮含量、叶磷含量)与环境变量(海拔、修复措施)的关系,探究当前恢复重建植物群落对环境变量及工程措施的响应。[结果] (1) 海拔显著影响Margalef丰富度指数、叶干物质含量(p<0.05);(2) 高强度的措施显著提高群落盖度、比叶面积、叶氮含量(p<0.05),但对叶磷含量有显著负向作用(p<0.05);(3) 人为高度干预的SJP技术能够显著增加高海拔植物的叶干物质含量,对群落修复效果总体较好。[结论] 海拔和修复措施是派墨公路沿线边坡植物群落恢复的主要影响因素,随着海拔升高,植被自然恢复难度增大,应加强人为修复措施强度,避免引起高寒地区生态退化。

    Abstract:

    [Objective] The influence of environmental factors on the plant community of a slope during the process of ecological restoration objective of this study was evaluated in order to provide a reference for the ecological restoration of disturbed areas in southeastern Tibet. [Methods] We studied an area of the newly constructed PAIMO Highway in southeastern Tibet. We determined the relationships between community cover, species diversity indexes (Shannon-Wiener index, Simpson diversity index, Margalef richness index, Pielou evenness index), community weighted trait values (specific leaf area, leaf dry matter content, leaf nitrogen content, and leaf phosphorus content), and environmental variables (elevation, restoration measures) based on an investigation of the plant community of an ecological restoration area along a slope. [Results] (1) Elevation significantly influenced the Margalef richness index and leaf dry matter content (p<0.05); (2) High-intensity measures significantly increased community cover, specific leaf area, and leaf nitrogen content (p<0.05), but significantly decreased leaf phosphorus content (p<0.05); (3) the SJP technique with high human intervention could significantly increase the leaf dry matter content of high-elevation plants and showed an overall greater efficacy. [Conclusion] The difficulty associated with natural vegetation restoration increases as elevation increases, and artificial restoration measures need to be intensified to prevent ecological degradation in alpine regions.

    参考文献
    [1] MARCOS B CARLUCCI, PEDRO H S BRANCANLION, RICARDO R RODRIGUES, et al., 2020. Functional traits and ecosystem services in ecological restoration [J]. Restoration Ecology, 28(6): 1372-1383.
    [2] CORNELISSEN J H C, LAVOREL S, GARNIER E, et al., 2003. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide [J]. Australian Journal of Botany, 51(4): 335-380.
    [3] DANG H, LI J, XU J, et al., 2022. Differences in soil water and nutrients under catchment afforestation and natural restoration shape herbaceous communities on the Chinese Loess Plateau [J]. Forest Ecology and Management, 505: 119925.
    [4] ENGST K, BAASCH A, ERFMEIER A, et al., 2016. Functional community ecology meets restoration ecology: Assessing the restoration success of alluvial floodplain meadows with functional traits [J]. Journal of Applied Ecology, 53(3): 751-764.
    [5] HU X-D, GAO J-Z, ZHOU M-T, et al., 2021. Evaluating the success of engineering disturbed slope eco-restoration in the alpine region, southeast Qinghai-Tibet Plateau, China [J]. Journal of Mountain Science, 18(11): 2820-2832.
    [6] HUANG R, TIAN Q, ZHANG Y, et al., 2022.Response of Leaf Functional Traits of Landscape Plants to Urban Green Space Environment in Lanzhou [J]. China. Forests, 13(5): 682.
    [7] IANNONE III B V, GALATOWITSCH S M, ROSEN C J 2008.Evaluation of resource-limiting strategies intended to prevent Phalaris arundinacea (reed canarygrass) invasions in restored sedge meadows [J]. Ecoscience, 15(4): 508-518.
    [8] JIA C, SUN B-P, YU X, et al., 2019. Evaluation of vegetation restoration along an expressway in a cold, arid, and desertified area of China [J]. Sustainability, 11(8): 2313.
    [9] KERGUNTEUIL A, DESCOMBES P, GLAUSER G, et al., 2018. Plant physical and chemical defence variation along elevation gradients: a functional trait-based approach [J]. Oecologia, 187(2): 561-571.
    [10] LI Y Y, SHAO M A, 2006.Change of soil physical properties under long-term natural vegetation restoration in the Loess Plateau of China [J]. Journal of Arid Environments, 64(1): 77-96.
    [11] MORETTI A P, OLGUIN F Y, PINAZO M A, et al., 2019. Water and light stresses drive acclimation during the establishment of a timber tree under different intensities of rainforest canopy coverage [J]. Cerne, 25: 93-104.
    [12] MULLER O, HIROSE T, WERGER M J, et al., 2011. Optimal use of leaf nitrogen explains seasonal changes in leaf nitrogen content of an understorey evergreen shrub [J]. Annals of Botany, 108(3): 529-536.
    [13] PEI J, YANG W, CAI Y, 2018. Relationship between vegetation and environment in an arid-hot valley in Southwestern China [J]. Sustainability, 10(12): 4774.
    [14] ROTHMAN S E, COLE C A, BRUNS M A, et al., 2021. The influence of soil amendments on a native wildflower seed mix in surface mine restoration [J]. Restoration Ecology, 29(7): e13440.
    [15] SON D, ALDAY J G, CHU Y, et al., 2020. Plant species colonization in newly created road habitats of South Korea: Insights for more effective restoration [J]. Science of the Total Environment, 719: 137476.
    [16] TONOLLA D, BRUDER A, SCHWEIZER S, 2017. Evaluation of mitigation measures to reduce hydropeaking impacts on river ecosystems–a case study from the Swiss Alps [J]. Science of the Total Environment, 574: 594-604.
    [17] WANG A, HUANG Q, XU X, et al., 2020.Influence of vegetation restoration on matrix structure and erosion resistance of iron tailings sites in eastern Hebei, China [J]. Journal of forestry research, 31(3): 969-980.
    [18] WILLIAMS E W, BARAK R S, KRAMER M, et al., 2018.In tallgrass prairie restorations, relatedness influences neighborhood-scale plant invasion while resource availability influences site-scale invasion [J]. Basic and Applied Ecology, 33: 37-48.
    [19] ZHANG J, CHEN H, FU Z, et al., 2021. Effects of vegetation restoration on soil properties along an elevation gradient in the karst region of southwest China [J]. Agriculture, Ecosystems Environment, 320: 107572.
    [20] 丁瑜, 胡文静, 夏振尧等, 2017.生态护坡生境基材土壤肥力动态变化研究 [J]. 水生态学杂志, 38(02): 31-37.
    [21] 董莉莉, 刘世荣, 史作民等, 2009.中国南北样带上栲属树种叶功能性状与环境因子的关系 [J]. 林业科学研究, 22(04): 463-469.
    [22] 古桑群宗, 拉多, 郭应杰等, 2021. 拉萨河流域亏组山植物物种丰富度和群落特征研究 [J]. 广西植物, 41(03): 372-383.
    [23] 顾卫, 邵琪, 戴泉玉等, 2012. 基于坡面植被恢复的岩质边坡分类及生境再造技术研究 [J]. 应用基础与工程科学学报, 20(05): 745-758.
    [24] 何斌, 李青, 陈群利等, 2021. 黔西北黄杉群落物种多样性的海拔梯度格局 [J]. 生态环境学报, 30(06): 1111-1120.
    [25] 何雅琴, 史晓洁, 陈国杰等, 2022. 滨柃叶功能性状对环境因子的响应 [J]. 生态学报, 42(06): 2418-2429.
    [26] 季贵斌, 梁力, 赵颖, 2016. 高速公路边坡混播植被群落生态适应性综合评价 [J]. 安全与环境学报, 16(06): 360-365.
    [27] 蒋成益, 马明东, 肖玖金, 2017. 川西北不同沙化程度草地植物功能性状及其驱动因子 [J]. 西北植物学报, 37(05): 965-973.
    [28] 兰虎林, 尹金珠, 彭国涛等, 2011. 岩质边坡植被恢复研究 [J]. 四川大学学报(自然科学版), 48(03): 713-719.
    [29] 刘秉儒, 2021. 生物多样性的海拔分布格局研究及进展 [J]. 生态环境学报, 30(02): 438-444.
    [30] 刘冠成, 黄雅曦, 王庆贵等, 2018. 环境因子对植物物种多样性的影响研究进展 [J]. 中国农学通报, 34(13): 83-89.
    [31] 刘旻霞, 马建祖, 2013. 阴阳坡植物功能性状与环境因子的变化特征[J]. 水土保持研究, 20(01): 102-106.
    [32] 刘鑫, 包维楷, 胡斌等, 2016. 高寒山区道路边坡植被恢复物种选择及适宜性评估 [J]. 应用与环境生物学报, 22(06): 1015-1022.
    [33] 马剑英, 陈发虎, 夏敦胜等, 2008. 荒漠植物红砂(Reaumuria soongorica)叶片元素和水分含量与土壤因子的关系 [J]. 生态学报(03): 983-992.
    [34] 苗艳明, 吕金枝, 毕润成, 2012. 不同功能型植物叶氮含量与光合特性的关系研究 [J]. 植物研究, 32(04): 425-429.
    [35] 欧云峰, 王洪亮, 王宫等, 2007. 黄土高原地区高速公路生态护坡植被恢复研究 [J]. 武汉理工大学学报(09): 162-166.
    [36] 欧芷阳, 庞世龙, 何峰等, 2020. 桂西南喀斯特山地蚬木叶片性状对微地形变化的响应 [J]. 西南农业学报, 33(10): 2225-2231.
    [37] 盘远方, 陈兴彬, 姜勇等, 2018. 桂林岩溶石山灌丛植物叶功能性状和土壤因子对坡向的响应 [J]. 生态学报, 38(05): 1581-1589.
    [38] 裴向军, 张晓超, 杨晴雯. 一种土质边坡护坡方法:中国, CN201610334309.3 [P]. 2018-06-19[2016-08-17]. https://www.cnipa.gov.cn/col/col1510/index.html.
    [39] 卿翠贵, 王华俊, 姚文杰等, 2020. 锚喷边坡坡面植被恢复生境构建技术 [J]. 中国水土保持(02): 34-36.
    [40] 史作民, 唐敬超, 程瑞梅等, 2015. 植物叶片氮分配及其影响因子研究进展 [J]. 生态学报, 35(18): 5909-5919.
    [41] 宋百敏, 刘建, 张玉虎等, 2022. 废弃采石场自然恢复过程中土壤和植被特征 [J]. 山东大学学报(理学版), 57(01): 8-19.
    [42] 孙航,周浙, 2002. 雅鲁藏布江大峡湾河谷地区种子植物[C]//昆明:云南科技出版社:425.
    [43] 田起隆, 张晓萍, 王妙倩等, 2022. 植被演替下植物组成多样性和群落稳定性与土壤团聚体的关系 [J]. 中国环境科学: 1-16.
    [44] 王常顺, 汪诗平, 2015. 植物叶片性状对气候变化的响应研究进展 [J]. 植物生态学报, 39(02): 206-216.
    [45] 王慧敏, 毕润成, 庞春花, 2018. 山西太岳山森林群落分布及其与环境因子的关系 [J]. 生态环境学报, 27(07): 1218-1223.
    [46] 王太平, 杨晓明, 2012. 高速公路边坡植物群落物种多样性 [J]. 西北林学院学报, 27(02): 230-234.
    [47] 吴舒尧, 黄姣, 李双成, 2017. 不同生态恢复方式下生态系统服务与生物多样性恢复效果的整合分析 [J]. 生态学报, 37(20): 6986-6999.
    [48] 武爱彬, 秦彦杰, 赵艳霞, 2018.地形综合指数及其在土地利用地形梯度效应分析中的应用——以太行山浅山丘陵区为例 [J]. 地理与地理信息科学, 34(06): 93-99+118.
    [49] 余娇娥, 司宏敏, 吴雪涛等, 2018. 海拔梯度下元谋干热河谷植物群落特征 [J]. 生态环境学报(11), 27: 2017-2022.
    [50] 张凯, 侯继华, 何念鹏, 2017. 油松叶功能性状分布特征及其控制因素 [J]. 生态学报, 37(03): 736-749.
    [51] 张增可, 吴雅华, 王齐等, 2020. 环境因子对海岛植物茎、叶功能性状的影响 [J]. 广西植物, 40(03): 433-442.
    [52] 张中华, 周华坤, 赵新全等, 2018. 青藏高原高寒草地生物多样性与生态系统功能的关系 [J]. 生物多样性, 26(02): 111-129.
    [53] 钟悦鸣, 王文娟, 王健铭等, 2019.极端干旱区绿洲植物叶功能性状及其对土壤水盐因子的响应 [J]. 北京林业大学学报, 41(10): 20-29.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:357
  • 下载次数: 717
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-10-31
  • 最后修改日期:2023-01-06
  • 录用日期:2023-01-10
  • 在线发布日期: 2023-11-02