湘西北天然林转换降低土壤有机碳库活性与酶活性
DOI:
作者:
作者单位:

1.湖南农业大学;2.湖南农业大学资源环境学院

作者简介:

通讯作者:

中图分类号:

S718.55

基金项目:

国家自然科学(41571234)、湖南省研究生科研创新项目(CX20210677)


Native forest conversion reduces soil organic C lability and enzyme activity in northwestern Hunan province
Author:
Affiliation:

College of Resources Environment,Hunan Agricultural University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    [目的] 了解土壤活性有机碳组分和酶活性对天然林转换的响应,对于预测区域土壤健康演变和环境变迁具有重要意义。[方法] 选取本底一致、利用史清晰的天然常绿阔叶林以及由此转变而来的针叶人工林、果园、坡耕地和水田,应用物理、化学和生物化学分析技术,研究表土活性有机碳组分、酶活性对天然林转换的响应规律与差异。[结果] 天然林改为果园、坡耕地和水田后显著降低土壤有机碳、活性有机碳含量和酶活性,降幅分别为42% ~ 67%、47% ~ 88%和36% ~ 89%。其中,以易氧化有机碳、微生物生物量碳含量和蔗糖酶活性的敏感性相对高于SOC敏感性,敏感地指示土壤有机碳库及活性的降低,易氧化有机碳更适宜推广应用。天然林改为人工林,土壤活性有机碳、酶活性的敏感性一般低于天然林改为果园、坡耕地,相对有利于土壤中活性有机碳库的保存。活性有机碳占总有机碳的比例由天然林改为人工林后显著降低,敏感地指示土壤碳库质量的下降。[结论] 天然林转换不仅导致土壤活性有机碳数量大幅减少、有机碳库的质量下降,与之相关的酶活性也降低;土壤有机碳的活性和酶活性的降低,指示天然林转换后土壤生物健康/质量的退化。

    Abstract:

    [Objective] Understanding the response of soil labile organic C fractions and enzyme activities to native forest conversion is of great significance for predicting regional soil health and environmental change. [Methods] Hereby the native evergreen broad-leaved forest and the converted conifer plantation, orchard, sloping tillage, and paddy with similar geographical background and clear land use history were selected. The responses of labile organic C fractions and enzyme activities in topsoil to the native forest conversion were investigated using various physical, chemical, and biochemical techniques. [Results] The native forest conversion to orchard, sloping tillage, and paddy significantly lowered the soil organic C content, labile C fractions contents, and enzyme activities by 42% ~ 67%, 47% ~ 88%, and 36% ~ 89%, respectively. Notably, the readily oxidizable organic C, microbial biomass C, and invertase activity had the highest reduction with the native forest conversion, sensitively indicating the reduction in soil organic C content and its lability. The readily oxidizable organic C was a practical index. The reductions in soil labile organic C fractions and enzyme activities were lower by the native forest conversion to plantation than by the native forest conversion to orchard and sloping, showing the preservation capacity of soil labile C in plantation. The ratio of labile organic C to total organic C in soil reduced significantly after the native forest conversion to plantation, sensitively reflecting the reduction in soil C quality. [Conclusion] The native forest conversion led to substantial reductions in labile organic C quantity, C quality, and related enzyme activities in soil, suggesting the degradation of soil biological health and decline in soil quality.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-12-21
  • 最后修改日期:2023-02-08
  • 录用日期:2023-02-09
  • 在线发布日期: 2023-11-09
  • 出版日期: