鄂西南5种典型林分枯落物与土壤的持水性能
作者:
中图分类号:

S757.2

基金项目:

湖北省教育厅中青年人才项目“鄂西南高山矮曲林凋落物分解障碍机制”(Q20221903); 湖北民族大学高水平科研成果校内培育项目“鄂西南典型森林空气中康养物质多样性与时空动态研究”(4205022); 生物资源保护与利用湖北省重点实验室开放项目(PT012006)


Litter and Soil Water-holding Capacity of Five Typical Forest Stands in Southwest Hubei Province
Author:
  • Zhou Yun

    Zhou Yun

    Hubei Key Laboratory of Biologic Resources Protection and Utilization(Hubei Minzu University), Enshi, Hubei 445000, China;School of Forestry and Horticulture, Hubei Minzu University, Enshi, Hubei 445000, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • Bai Yingchen

    Bai Yingchen

    School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100010, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • Yao Lan

    Yao Lan

    Hubei Key Laboratory of Biologic Resources Protection and Utilization(Hubei Minzu University), Enshi, Hubei 445000, China;School of Forestry and Horticulture, Hubei Minzu University, Enshi, Hubei 445000, China;Hubei Enshi National Key Experimental Station for Forest Ecosystem, Enshi, Hubei 445000, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • Ai Xunru

    Ai Xunru

    Hubei Key Laboratory of Biologic Resources Protection and Utilization(Hubei Minzu University), Enshi, Hubei 445000, China;School of Forestry and Horticulture, Hubei Minzu University, Enshi, Hubei 445000, China;Hubei Enshi National Key Experimental Station for Forest Ecosystem, Enshi, Hubei 445000, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • Zhu Jiang

    Zhu Jiang

    Hubei Key Laboratory of Biologic Resources Protection and Utilization(Hubei Minzu University), Enshi, Hubei 445000, China;School of Forestry and Horticulture, Hubei Minzu University, Enshi, Hubei 445000, China;Hubei Enshi National Key Experimental Station for Forest Ecosystem, Enshi, Hubei 445000, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • Guo Qiuju

    Guo Qiuju

    Hubei Key Laboratory of Biologic Resources Protection and Utilization(Hubei Minzu University), Enshi, Hubei 445000, China;School of Forestry and Horticulture, Hubei Minzu University, Enshi, Hubei 445000, China;Hubei Enshi National Key Experimental Station for Forest Ecosystem, Enshi, Hubei 445000, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [38]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    [目的] 探究鄂西南地区典型森林枯落物和土壤的水文特性,分析对比不同林分的持水性能,为区域内选择适宜的造林树种、营造合理的水土保持林提供理论依据与科学参考。 [方法] 以利川金子山国有林场的5种典型林分为研究对象,采用野外调查与采样、环刀法和室内浸泡法,对比分析各林分枯落物层储量、持水过程、持水能力,以及土壤层持水能力和入渗过程。 [结果] ①5种林分枯落物储量表现为:杉木人工林>常绿落叶阔叶混交林>日本落叶松人工林>柳杉人工林>鹅掌楸人工林;最大持水量变化范围在13.94~29.12 t/hm2之间,与枯落物储量变化相一致。 ②枯落物持水量与浸水时间关系为对数函数关系,吸水速率与浸水时间关系为幂函数关系。 ③0—40 cm土壤层最大持水量介于277.02~334.12 t/hm2之间,表现为:鹅掌楸人工林>常绿落叶阔叶混交林>日本落叶松人工林>杉木人工林>柳杉人工林;土壤平均渗透速率变化范围为6.89~22.30 mm/min,稳渗时间在18.40~25.73 min之间,其中鹅掌楸人工林土壤渗透性最好。 [结论] 枯落物层中杉木人工林持水性能表现最好;土壤层中鹅掌楸人工林持水性能最好;各项指标综合评定结果阔叶混交林综合持水性能最佳。鄂西南地区未来应采用近自然营林的方式,适当地栽植针叶树种和阔叶树种,提高混交林的种植比例,增加枯落物水文效益的同时,使土壤更加通气透水,以此最大限度地发挥不同林分林下枯落物和土壤的持水能力。

    Abstract:

    [Objective] The hydrological characteristics of typical forest litters and soil in Southwest Hubei Province were studied, and the water-holding capacity of different forest stands were analyzed and compared in order to provide a theoretical basis and scientific reference for selecting suitable afforestation species and creating reasonable soil and water conservation forests in the region. [Methods] The study was conducted for five typical forest stands in the national forest farm of Jinzi Mountain in Lichuan City. Field survey and sampling, the cutting ring method, and the indoor soaking method were used. The litter storage capacity, water-holding process, and water-holding capacity, as well as the water-holding capacity and infiltration process of the soil layer in each forest stand were compared and analyzed. [Results] ① Litter storage for the five forest stands followed the order of Cunninghamia lanceolata plantation > deciduous broad-leaved mixed forest > Larix kaempferi plantation > Cryptomeria fortunei plantation > artificial plantation of Liriodendron chinense. The maximum water-holding capacity varied from 13.94 to 29.12 t/hm2, which was consistent with the change of litter storage. ② The litter water-holding capacity and immersion time exhibited a logarithmic relationship. The water absorption rate and immersion time followed a power function relationship. ③ The maximum water-holding capacity of the 0—40 cm soil layer ranged from 277.02 to 334.12 t/hm2, and followed the order of artificial plantation of Liriodendron chinense> deciduous broad-leaved mixed forest> Larix kaempferi plantation> Cunninghamia lanceolata plantation> Cryptomeria ortune plantation. The average infiltration rate varied from 6.89 to 22.30 mm/min. The steady infiltration time ranged from 18.40 to 25.73 min. The average infiltration rate of soil varied from 6.89 to 22 mm/min. The steady infiltration time ranged from 18.40 to 25.73 min. The best soil permeability was found in the artificial plantation of Liriodendron chinense, followed by the deciduous broad-leaved mixed forest. ④ From the analysis using the coordinate integrated assessment method, we observed the greatest comprehensive water-holding performance for the deciduous broad-leaved mixed forest. However, in terms of the water-holding performance of litter and soil, the Cunninghamia lanceolata plantation and the artificial plantation of Liriodendron chinense, respectively, were the best. [Conclusion] For the litter layer, Cunninghamia lanceolata plantation had the best water-holding performance. For the soil layer, Liriodendron chinense plantation had the best water-holding performance. Based on the comprehensive evaluation of all indicators, the overall water-holding performance of broad-leaved mixed forest was the best. Therefore, in Southwest Hubei Province, we recommend adoption of a close-to-natural forest culture and management method, planting coniferous and broad-leaved species appropriately, and increasing the proportion of mixed forests so as to increase the hydrological benefits of litter, and to increase soil aeration and permeability, thereby maximizing the water-holding capacity of litter and soil under different forest stands.

    参考文献
    [1] 孙拥康,汤景明,王怡.亚热带日本落叶松人工林枯落物及土壤层水文效应[J].北京林业大学学报,2021,43(8):60-69.
    [2] 时忠杰,王彦辉,于澎涛,等.宁夏六盘山林区几种主要森林植被生态水文功能研究[J].水土保持学报,2005,19(3):134-138.
    [3] 杨关吕.森林枯落物分解研究进展[J].亚热带水土保持,2021,33(3):30-35.
    [4] 吕刚,曹小平,卢慧,等.辽西海棠山森林枯落物持水与土壤贮水能力研究[J].水土保持学报,2010,24(3):203-208.
    [5] 郑淼.华北土石山区不同林分类型枯落物及土壤水文生态效应[J].中国水土保持科学,2020,18(2):84-91.
    [6] Song Xiang, Yan Changzhen, Xie Jiali, et al. Assessment of changes in the area of the water conservation forest in the Qilian Mountains of China’s Gansu Province, and the effects on water conservation [J]. Environmental Earth Sciences, 2012,66(2):2441-2448.
    [7] 刘忠玲,刘建明,吕跃东.倭肯河上游两种林型枯落物和土壤持水特性[J].水土保持研究,2021,28(2):235-241.
    [8] 陈斯.金子山亚热带常绿落叶阔叶混交林群落结构与物种多样性[D].湖北 恩施:湖北民族学院,2017.
    [9] 国家林业局.GB/T33027-2016 森林生态系统长期定位观测方法[S].北京:中国标准出版社,2016.
    [10] 白英辰,朱江,程小琴,等.密度调控对华北落叶松人工林枯落物水文特征的影响[J].水土保持学报,2016,30(6):128-133.
    [11] 彭圣军,王姣,刘颖,等.崇义客家梯田区森林枯落物持水特性[J].长江科学院院报,2021,38(12):60-65.
    [12] 林业行业标准.LY/T1218-1999森林土壤渗滤率的测定[S].北京:中国标准出版社,1999.
    [13] 林业行业标准.LY/T1215-1999森林土壤水分—物理性质的测定[S].北京:中国标准出版社,1999.
    [14] 张昌顺,范少辉,官凤英,等.闽北毛竹林的土壤渗透性及其影响因子[J].林业科学,2009,45(1):36-42.
    [15] 吕刚,翟景轩,李叶鑫,等.辽西北风沙地不同植物群落土壤入渗特性[J].干旱地区农业研究,2018,36(4):133-139.
    [16] 陈引珍,程金花,张洪江,等.缙云山几种林分水源涵养和保土功能评价[J].水土保持学报,2009,23(2):66-70.
    [17] 梁晓娇,王树力.阿什河源头不同类型红松人工林枯落物及其土壤水文特性[J].水土保持学报,2017,31(1):140-145.
    [18] 陈琦,刘苑秋,刘士余,等.杉木取代阔叶林后林下水源涵养功能差异评价[J].水土保持学报,2019,33(2):244-250.
    [19] 胡文杰,庞宏东,王晓荣,等.长江中游平原湖区人工林枯落物和表层土壤持水特性[J].长江流域资源与环境,2021,30(3):644-653.
    [20] 李娜,赵传燕,郝虎,等.海拔和郁闭度对祁连山青海云杉林叶凋落物分解的影响[J].生态学报,2021,41(11):4493-4502.
    [21] 牛勇.北京山区不同林分水文生态效应特征[D].北京:北京林业大学,2015.
    [22] 涂志华,范志平,孙学凯,等.大伙房水库流域不同植被类型枯落物层和土壤层水文效应[J].水土保持学报,2019,33(1):127-133.
    [23] 朱家晸,秦富仓,李龙,等.内蒙古清水河县公益林区不同林地类型枯落物层水文效应[J].水土保持通报,2022,42(1):114-121.
    [24] 赵阳,王飞,齐瑞,等.白龙江、洮河林区5种典型森林枯落物与土壤层水源涵养效应[J].水土保持研究,2021,28(3):118-125.
    [25] 杨家慧,谭伟,卯光宪,等.黔中不同龄组柳杉人工林枯落物水源涵养能力综合评价[J].水土保持学报,2020,34(2):296-301.
    [26] 周巧稚,毕华兴,孔凌霄,等.晋西黄土区不同密度刺槐林枯落物层水文生态功能研究[J].水土保持学报,2018,32(4):115-121.
    [27] 刘凯,贺康宁,王先棒.青海高寒区不同密度白桦林枯落物水文效应[J].北京林业大学学报,2018,40(1):89-97.
    [28] Wieder W R, Cleveland C C, Townsend A R. Tropical tree species composition affects the oxidation of dissolved organic matter from litter [J]. Biogeochemistry, 2008,88(2):127-138.
    [29] 罗航,何介南,康文星,等.湘南红壤区互叶白千层人工林枯落物层及土壤水源涵养能力研究[J].中南林业科技大学学报,2021,41(5):102-109.
    [30] 陈乾,刘凯,王希贤,等.福建柏混交林主要土壤理化性质与土壤含水量的关联研究[J].福建农林大学学报(自然科学版),2021,50(6):771-780.
    [31] 骆土寿,李意德,陈德祥,等.广东白盆珠水库水源林土壤水源涵养能力研究[J].生态科学,2007,26(2):159-164.
    [32] 李璐杉.昆明车木河水库水源地不同森林类型枯落物与土壤特性及水源涵养功能研究[D].云南 昆明:云南师范大学,2020.
    [33] 赵雨森,韩春华,张宏光,等.阿什河上游小流域主要林分类型土壤水文功能研究[J].水土保持学报,2012,26(2):203-208.
    [34] 杨晓霞,赵锦梅,张雪,等.祁连山东段山地典型灌丛枯落物及土壤水源涵养功能研究[J].干旱区地理,2022,45(1):197-207.
    [35] 孙海,王秋霞,张春阁,等.不同树叶凋落物对人参土壤理化性质及微生物群落结构的影响[J].生态学报,2018,38(10):3603-3615.
    [36] 胡静霞,杨新兵,朱辰光,等.冀西北地区4种纯林枯落物及土壤水文效应[J].水土保持研究,2017,24(4):304-310.
    [37] 张引,黄永梅,周长亮,等.冀北山地5个海拔梯度油松林枯落物与土壤水源涵养功能研究[J].水土保持研究,2019,26(2):126-131.
    [38] 王佑民.中国林地枯落物持水保土作用研究概况[J].水土保持学报,2000,14(4):108-113.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周云,白英辰,姚兰,艾训儒,朱江,郭秋菊.鄂西南5种典型林分枯落物与土壤的持水性能[J].水土保持通报,2023,43(2):77-86

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-06-03
  • 最后修改日期:2022-08-02
  • 在线发布日期: 2023-06-01