根—土复合体强度及其非线性特性试验研究
作者:
中图分类号:

TU411.7

基金项目:

国家自然科学基金项目“青藏高原东缘地形急变带山地生态—水文过程与山地灾害互馈机制及灾害风险调控”(41790432); 国家自然科学基金面上项目“川藏铁路地形急变带非饱和堆积物非线性入渗演化及失稳研究”(42277183)


Experimental Research on Strength of Root-Soil Composites and Their Nonlinear Characteristics
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [36]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    [目的] 研究根—土复合体的非线性破坏准则,并结合不同含根量(G=0.12%,0.24%,0.36%)、不同含水率(w=13.22%,16.22%,19.22%)条件下根—土复合体强度,开展根—土复合体非线性特性研究,为生态水土防治工作提供科学参考。 [方法] 采用GDS三轴仪开展了根—土复合体的固结不排水三轴试验,获得根—土复合体应力—应变曲线及抗剪强度指标。 [结果] 素土与根—土复合体应力—应变关系曲线为硬化型。含根量与根—土复合体峰值强度成正比关系,但含水率对其峰值强度的影响表现出反比关系。当G=0.36%时,根—土复合体峰值强度的最大增幅为70.1%;当w=13.22%时,根—土复合体峰值强度最大增幅为86.7%。根—土复合体非线性破坏准则在正应力低于临界应力时呈非线性,在正应力高于临界应力时呈线性。c,k为根—土复合体非线性破坏准则中描述根系作用的关键参数,其中c与含根量和含水率均成正比关系,c越大,根系对根—土复合体强度的贡献程度越大;k与含根量成反比,与含水率成正比,k越小,根—土复合体强度包线的非线性化特征越明显。 [结论] 含根量(G)和含水率(w)对根—土复合体强度有显著影响。素土与根—土复合体的应力—应变关系曲线均呈硬化型,且根—土复合体的硬化程度明显高于素土,表明根系的加入能够同时增大土体的强度和刚度。

    Abstract:

    [Objective] A nonlinear failure criterion of root-soil composites and the nonlinear characteristics of root-soil composites was studied combining with the strength of root-soil composites under three root content conditions (G=0.12%, 0.24%, and 0.36%) and three moisture content conditions (w=13.22%, 16.22%, and 19.22%). [Methods] The GDS triaxial apparatus was used to conduct consolidated-undrained triaxial tests to obtain the stress-strain curves and shear strength parameters of root-soil composites. [Results] Unreinforced soil and root-soil composite stress-strain curves exhibited characteristics of hardening. Additionally, moisture content was negatively correlated with the peak stress of rooted soil, while root content was positively correlated. Under the condition of G=0.36%, 70.1% was the maximum increase of peak strength of the root-soil composite. When w=13.22%, the peak strength of the root-soil composite increased by a maximum of 86.7%. The nonlinear failure criterion of root-soil composites was nonlinear when the normal stress was lower than the critical stress, and linear when the normal stress was higher than the critical stress. The key parameters that described the effect of roots in the nonlinear failure criterion were c and k. c had a positive correlation with root content and moisture content. The contribution of roots in rooted soil shear strength increased with increasing c. Moreover, k was positively correlated with root content and negatively correlated with moisture content. The smaller the value of k, the more obvious the nonlinear characteristic of the strength envelope of the root-soil composite. [Conclusion] The strength of root-soil composites is greatly influenced by root content and moisture content. The stress-strain relationship curves of both unreinforced soil and root-soil composite showed a hardening type, and the hardening degree of the root soil composite is significantly higher than that of unreinforced soil, indicating that the addition of roots can simultaneously increase the strength and stiffness of the soil.

    参考文献
    [1] Wu Lizhou, Selvadurai A P S, Zhang Limin, et al. Poro-mechanical coupling influences on potential for rainfall-induced shallow landslides in unsaturated soils [J]. Advances in Water Resources, 2016,98:114-121.
    [2] Li Shaohong, Luo Xiaohui, Wu Lizhou. A new method for calculating failure probability of landslide based on ANN and convex set model [J]. Landslides, 2021,18:2855-2867.
    [3] 杨路,杜峰,秦晶晶,等.黄土区3种优势灌木根土复合体的抗剪强度研究[J].水土保持研究,2022,29(1):295-300,310.
    [4] 钟彩尹,李鹏程,马滔,等.根—土复合体的三轴试验及其强度分析[J].水文地质工程地质,2022,49(6):97-104.
    [5] 宗全利,冯博,蔡杭兵,等.塔里木河流域河岸植被根系护坡的力学机制[J].岩石力学与工程学报,2018,37(5):1290-1300.
    [6] 栗岳洲,付江涛,余冬梅,等.寒旱环境盐生植物根系固土护坡力学效应及其最优含根量探讨[J].岩石力学与工程学报,2015,34(7):1370-1383.
    [7] Yildiz A, Graf F, Rickli C, et al. Assessment of plant-induced suction and its effects on the shear strength of rooted soils [J]. Geotechnical Engineering, 2019,172(6):507-519.
    [8] 张家明,陈积普,杨继清,等.中国岩质边坡植被护坡技术研究进展[J].水土保持学报,2019,33(5):1-7.
    [9] 许桐,刘昌义,胡夏嵩,等.柴达木盆地4种盐生植物根系力学特性及根—土复合体抗剪强度研究[J].水土保持研究,2021,28(3):101-110.
    [10] 王程,胡夏嵩,刘昌义,等.黄河源区六种草本植物根系抗拔力特征及其影响因素研究[J].草地学报,2023,31(01):157-165.
    [11] Alam S, Manzur T, Borquist E, et al. In-situ assessment of soil-root bonding strength to aid in preventing soil erosion [J]. Soil and Tillage Research, 2021,213:105140.
    [12] Feng Song, Liu Hongwei, Ng C W W. Analytical analysis of the mechanical and hydrological effects of vegetation on shallow slope stability [J]. Computers and Geotechnics, 2020,118:103335.
    [13] 颜哲豪,谌芸,刘枭宏,等.喀斯特坡地2种地埂篱根—土复合体抗剪和抗冲性能综合评价[J].生态学报,2022,42(5):1811-1820.
    [14] Su Lijun, Hu Bingli, Xie Qijun, et al. Experimental and theoretical study of mechanical properties of root-soil interface for slope protection [J]. Journal of Mountain Science, 2020,17(11):2784-2795.
    [15] 孙庆敏,葛永刚,陈攀,等.汶川典型植物根—土复合体抗剪强度影响因素评价[J].水土保持学报,2022,36(1):58-65.
    [16] Li Pengcheng, Xiao Xuepei, Wu Lizhou, et al. Study on the shear strength of root-soil composite and root reinforcement mechanism [J]. Forests, 2022,13(6):898.
    [17] 李建兴,何丙辉,谌芸,等.不同护坡草本植物的根系分布特征及其对土壤抗剪强度的影响[J].农业工程学报,2013,29(10):144-152.
    [18] 祁兆鑫,余冬梅,刘亚斌,等.寒旱环境盐生植物根—土复合体抗剪强度影响因素试验研究[J].工程地质学报,2017,25(6):1438-1448.
    [19] 吕春娟,陈丽华,陈卫国,等.根土复合体的抗剪特性研究[J].灌溉排水学报,2016,35(3):13-19.
    [20] Guo Ping, Xia Zhenyao, Liu Qi, et al. The mechanism of the plant roots’ soil-reinforcement based on generalized equivalent confining pressure [J]. Peer J, 2020,8:e10064.
    [21] Meng Suyun, Zhao Guoqing, Yang Yuyou. Impact of plant root morphology on rooted-soil shear resistance using triaxial testing [J]. Advances in Civil Engineering, 2020,2020(10):1-13.
    [22] Lian Baoqin, Peng Jianbing, Zhan Hongbin, et al. Mechanical response of root-reinforced loess with various water contents [J]. Soil and Tillage Research, 2019,193:85-94.
    [23] 方薇.一种非饱和土的非线性抗剪强度包络壳模型[J].岩石力学与工程学报,2018,37(11):2601-2609.
    [24] Sun Chaowei, Chai Junrui, Luo Tao, et al. Nonlinear shear-strength reduction technique for stability analysis of uniform cohesive slopes with a general nonlinear failure criterion [J]. International Journal of Geomechanics, 2021,21(1):06020033.
    [25] 马煜,余斌,李彩侠,等.汶川强震区群发性泥石流特征研究:以四川省都江堰龙池“8·13”群发泥石流为例[J].灾害学,2014,29(3):218-223.
    [26] 刘亚斌,胡夏嵩,余冬梅,等.西宁盆地黄土区草本和灌木组合根系分布特征及其增强土体抗剪强度效应[J].工程地质学报,2020,28(3):471-481.
    [27] 中华人民共和国建设部.GB/T50123-2019土工试验方法标准[S].北京:中国计划出版社,2019.
    [28] 刘益良,刘晓立,付旭,等.植物根系对低液限粉质黏土边坡浅层土体抗剪强度影响的试验研究[J].工程地质学报,2016,24(3):384-390.
    [29] Gao Zhiwei, Zhao Jidong. Evaluation on failure of fiber-reinforced sand [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013,139(1):95-106.
    [30] 王磊,朱斌,李俊超,等.一种纤维加筋土的两相本构模型[J].岩土工程学报,2014,36(7):1326-1333.
    [31] 王元战,刘旭菲,张智凯,等.含根量对原状与重塑草根加筋土强度影响的试验研究[J].岩土工程学报,2015,37(8):1405-1410.
    [32] 付江涛,余冬梅,李晓康,等.柴达木盆地盐湖区盐生植物根—土复合体物理力学性质指标概率统计分析[J].岩石力学与工程学报,2020,39(8):1696-1709.
    [33] Pollen N. Temporal and spatial variability in root reinforcement of streambanks: accounting for soil shear strength and moisture [J]. Catena, 2007,69:197-205.
    [34] 朱锦奇,苏伯儒,王云琦,等.荆条根系的固土功能随土壤含水率的变化[J].林业科学,2020,56(6):202-208.
    [35] Liu Yabin, Hu Xaiasong, Yu Dongmei, et al. Influence of the roots of mixed-planting species on the shear strength of saline loess soil [J]. Journal of Mountain Science, 2021,18(3):806-818.
    [36] 奚灵智,王龙威,王颖,等.植被根系固土抗剪强度试验研究[J].河北工程大学学报(自然科学版),2019,36(4):84-89.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李鹏程,钟彩尹,何博,肖学沛,吴礼舟.根—土复合体强度及其非线性特性试验研究[J].水土保持通报,2023,43(2):95-103

复制
分享
文章指标
  • 点击次数:339
  • 下载次数: 830
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-07-01
  • 最后修改日期:2022-08-26
  • 在线发布日期: 2023-06-01