湟水河流域景观格局与生态风险时空特征及驱动因子探测
作者:
中图分类号:

X826,P901

基金项目:

青海省应用基础研究项目“湟水西宁段水体生态服务功能时空动态演变规律及调控技术研究”(2020-ZJ-756);青海民族大学校级规划项目“湟水流域陆地水循环对气候变化和生态景观格局动态的响应”(23GH14)


Spatiotemporal Characteristics and Driver Detection of Landscape Pattern and Ecological Risk in Huangshui River Basin
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [38]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 分析景观格局变化特征及景观生态风险时空演变规律与影响驱动因子,为流域综合治理,生态系统管理和可持续发展提供理论依据。[方法] 基于湟水河流域2000,2010,2020年3期土地利用数据,采用景观指数法构建流域景观生态风险评价模型,耦合ArcGIS 10.6,Fragstats 4.2,GeoDa 1.20讨论景观格局与生态风险的时空动态特征,利用地理探测器识别驱动景观生态风险空间分异的主导因子。[结果] ①草地和耕地是湟水河流域的优势地类,土地转移主要发生在耕地、草地和建设用地之间,城市扩张是近20 a土地利用变化的主要特征。②2000—2020年景观生态风险先增后减小,生态服务价值与景观生态风险表现出负相关性。③景观生态风险空间分布主要呈现“高—高”和“低—低”集聚,高程是导致景观生态风险空间格局分异的主导因子,因子交互作用对景观生态风险空间分异有增强效应。④景观生态风险空间格局具有明显的海拔梯度效应。可根据海拔梯度将湟水河流域划分为重点管控区、严格管控区和一般管控区。[结论] 生态治理和生态修复是湟水河流域景观生态风险指数下降的主要原因,不同生态风险空间管控区应采取差异化调控措施,土地利用优化管理与用途管制在生态风险调控中需高度关注。

    Abstract:

    [Objective] The characteristics and driving factors of landscape pattern changes and the spatiotemporal evolution of landscape ecological risk was analyzed in order to provide a theoretical basis for integrated watershed management, watershed ecosystem management, and sustainable development.[Methods] A landscape ecological risk assessment model was proposed using the landscape index method based on land use data in 2000, 2010, and 2020 from the Huangshui River basin. Spatiotemporal dynamic characteristics of landscape patterns and ecological risk were examined by coupling ArcGIS 10.6, Fragstats 4.2, and GeoDa 1.20. Factors driving spatially stratified heterogeneity of landscape ecological risk were identified using geographic detectors.[Results] ① Grassland and cropland were the dominant land use types in the Huangshui River basin. Land transfer mainly occurred between cropland, grassland, and construction land. Urban expansion was the main feature of land use/land cover changes over the past 20 years. ② From 2000 to 2020, landscape ecological risk in the Huangshui River basin initially increased and then decreased, and there was a negative correlation between ecological service value and landscape ecological risk. ③ Spatial distributions of landscape ecological risk in the Huangshui River basin mainly presented "high-high" and "low-low" agglomerations. Elevation was the main factor driving the spatially stratified heterogeneity of ecological risk. The interaction between driving factors had an enhancing effect on spatially stratified heterogeneity of landscape ecological risk. ④ Spatial distribution of landscape ecological risks had an obvious altitude gradient effect. According to the altitude gradient, the Huangshui River basin was divided into three ecological risk control zones:key control area, strict control area, and general control area.[Conclusion] Ecological governance and ecological restoration were the main reasons for the decline of the landscape ecological risk index in the Huangshui River basin. Different management and control strategies should be implemented for different ecological risk control zones. Land use optimization management and land use control should be primary concerns with respect to ecological risk control.

    参考文献
    [1] 曹祺文,张曦文,马洪坤,等.景观生态风险研究进展及基于生态系统服务的评价框架:ESRISK[J].地理学报,2018,73(5):843-855.
    [2] Gong Jian, Yang Jianxin, Tang Wenwu. Spatially explicit landscape-level ecological risks induced by land use and land cover change in a national ecologically representative region in China[J]. International Journal of Environmental Research and Public Health, 2015,12(11):14192-14215.
    [3] Li Jialin, Pu Ruiliang, Gong Hongbo, et al. Evolution characteristics of landscape ecological risk patterns in coastal zones in Zhejiang Province, China[J]. Sustainability, 2017,9(4):584.
    [4] 何春阳,张金茜,刘志锋,等.1990-2018年土地利用/覆盖变化研究的特征和进展[J].地理学报,2021,76(11):2730-2748.
    [5] Steffen W, Richardson K, Rockström J, et al. Planetary boundaries:Guiding human development on a changing planet[J]. Science, 2015,347(6223):1259855.
    [6] Hou Mengjing, Ge Jing, Gao Jinlong, et al. Ecological risk assessment and impact factor analysis of alpine wetland ecosystem based on LUCC and boosted regression tree on the zoige plateau, China[J]. Remote Sensing, 2020,12(3):368.
    [7] 彭建,党威雄,刘焱序,等.景观生态风险评价研究进展与展望[J].地理学报,2015,70(4):664-677.
    [8] 傅伯杰,张立伟.土地利用变化与生态系统服务:概念、方法与进展[J].地理科学进展,2014,33(4):441-446.
    [9] 张行,陈海,史琴琴,等.陕西省景观生态脆弱性时空演变及其影响因素[J].干旱区研究,2020,37(2):496-505.
    [10] Yang Yanping, Chen Jianjun, Lan Yanping, et al. Landscape pattern and ecological risk assessment in Guangxi based on land use change[J]. International Journal of Environmental Research and Public Health, 2022,19(3):1595.
    [11] Wang Hong, Liu Xingming, Zhao Chuanyan, et al. Spatial-temporal pattern analysis of landscape ecological risk assessment based on land use/land cover change in Baishuijiang National nature reserve in Gansu Province, China[J]. Ecological Indicators, 2021,124:107454.
    [12] Qu Yanbo, Zong Haining, Su Desheng, et al. Land use change and its impact on landscape ecological risk in typical areas of the Yellow River basin in China[J]. International Journal of Environmental Research and Public Health, 2021,18(21):11301.
    [13] Mo Wenbo, Wang Yong, Zhang Yingxue, et al. Impacts of road network expansion on landscape ecological risk in a megacity, China:A case study of Beijing[J]. Science of the Total Environment, 2017,574:1000-1011.
    [14] 林媚珍,葛志鹏,纪少婷,等.中山市土地利用变化及其生态风险响应[J].生态科学,2016,35(5):96-104.
    [15] 封建民,李晓华,文琦.榆林市土地利用变化对景观格局脆弱性的影响[J].国土资源科技管理,2020,37(3):25-36.
    [16] 于航,刘学录,赵天明,等.基于景观格局的祁连山国家公园景观生态风险评价[J].生态科学,2022,41(2):99-107.
    [17] 高宾,李小玉,李志刚,等.基于景观格局的锦州湾沿海经济开发区生态风险分析[J].生态学报,2011,31(12):3441-3450.
    [18] 万慧琳,王赛鸽,陈彬,等.三江平原湿地生态风险评价及空间阈值分析[J].生态学报,2022,42(16):6595-6606.
    [19] Gao Lina, Tao Fei, Liu Runrui, et al. Multi-scenario simulation and ecological risk analysis of land use based on the PLUS model:A case study of Nanjing[J]. Sustainable Cities and Society, 2022,85:104055.
    [20] 李琛,高彬嫔,吴映梅,等.基于PLUS模型的山区城镇景观生态风险动态模拟[J].浙江农林大学学报,2022,39(1):84-94.
    [21] 尉芳,刘京,夏利恒,等.基于LUCC的陕西渭北旱塬区景观生态风险评价[J].中国环境科学,2022,42(4):1963-1974.
    [22] 张韦萍,石培基,赵武生,等.黄河上游兰州-西宁城市群资源环境承载力时空分异及障碍因子诊断[J].应用生态学报,2022,33(9):2501-2510.
    [23] Chen Lin, Zhou Bin, Man Weidong, et al. Landsat-based monitoring of the heat effects of urbanization directions and types in Hangzhou City from 2000 to 2020[J]. Remote Sensing, 2021,13(21):4268.
    [24] Han Ze, Song Wei, Deng Xiangzheng. Responses of ecosystem service to land use change in Qinghai Province[J]. Energies, 2016,9:1-16.
    [25] 余新晓,张晓明,牛丽丽,等.黄土高原流域土地利用/覆被动态演变及驱动力分析[J].农业工程学报,2009,25(7):219-225.
    [26] 刘希朝,李效顺,蒋冬梅.基于土地利用变化的黄河流域景观格局及生态风险评估[J].农业工程学报,2021,37(4):265-274.
    [27] 崔杨林,高祥,董斌,等.县域景观生态风险评价[J].浙江农林大学学报,2021,38(3):541-551.
    [28] 王敏,胡守庚,张绪冰,等.干旱区绿洲城镇景观生态风险时空变化分析:以张掖绿洲乡镇为例[J].生态学报,2022,42(14):5812-5824.
    [29] Yang Yanping, Chen Jianjun, Lan Yanping, et al. Landscape pattern and ecological risk assessment in Guangxi based on land use change[J]. International Journal of Environmental Research and Public Health, 2022,19(3):1595.
    [30] 张学斌,石培基,罗君,等.基于景观格局的干旱内陆河流域生态风险分析:以石羊河流域为例[J].自然资源学报,2014,29(3):410-419.
    [31] 孙丽蓉,周冬梅,岑国璋,等.基于地理探测器模型的疏勒河流域景观生态风险评价及驱动因素分析[J].干旱区地理,2021,44(5):1384-1395.
    [32] 王劲峰,徐成东.地理探测器:原理与展望[J].地理学报,2017,72(1):116-134.
    [33] 谢高地,肖玉,甄霖,等.我国粮食生产的生态服务价值研究[J].中国生态农业学报,2005,13(3):10-13.
    [34] 谢高地,甄霖,鲁春霞,等.一个基于专家知识的生态系统服务价值化方法[J].自然资源学报,2008,23(5):911-919.
    [35] 谢高地,张彩霞,张雷明,等.基于单位面积价值当量因子的生态系统服务价值化方法改进[J].自然资源学报,2015,30(8):1243-1254.
    [36] 朱润苗,陈松林.1980-2020年福建省景观生态风险与生态系统服务价值的空间关系[J].应用生态学报,2022,33(6):1599-1607.
    [37] 靳甜甜,张云霞,朱月华,等.黄土高原林区生态系统服务价值与景观生态风险时空变化及其关联性:以子午岭区为例[J].应用生态学报,2021,32(5):1623-1632.
    [38] Wang Pengquan, Li Runjie, Liu Dejun, et al. Dynamic characteristics and responses of ecosystem services under land use/land cover change scenarios in the Huangshui River basin, China[J]. Ecological Indicators, 2022,144:109539.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王鹏全,刘得俊,李润杰,吴元梅.湟水河流域景观格局与生态风险时空特征及驱动因子探测[J].水土保持通报,2023,43(3):213-224

复制
分享
文章指标
  • 点击次数:199
  • 下载次数: 706
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-10-14
  • 最后修改日期:2022-10-23
  • 在线发布日期: 2023-08-16