水生态环境中不同建材基质附着藻类的生物学特征
作者:
中图分类号:

X826

基金项目:

上海市科学技术委员会项目“自然光驱动水生态系统引导构建技术研究”(20dz1204404)


Biological Characteristics of Periphytic Algae on Different Building Material Substrates in Water Eco-enrironment
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [48]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    [目的] 开展不同附着藻类生物学特征的试验,分析水质指标与藻类生物学特征的关系,为筛选科学合理的附着基质,丰富附着藻类着生提供科学支持。[方法] 通过模拟试验,分析3种不同建材基质(花岗岩、聚乙烯网、木板)附着藻类的生物学特征,筛选出效果好且易于资源化利用的附着基质类型。[结果] 花岗岩和木板基质的附着藻类群落更加稳定,生物学特征更优,功能性藻类种类更多,更有利于发挥附着藻类在水环境中的生态效应。[结论] 综合考虑可利用程度和操作的难易程度,花岗岩基质是3种基质中最合适的基质。

    Abstract:

    [Objective] The biological characteristics of different attached algae were determined and the relation between water quality indicators and algae biological characteristics were analyzed in order to provide scientific support for screening scientifically reasonable attached substrates and enriching the growth of attached algae. [Methods] The biological characteristics of algae attached to three different building material substrates (granite, polyethylene mesh, wood) were analyzed using simulation experiments. The types of attached substrates having good effects and easy resource utilization were selected. [Results] The periphytic algae communities attached to granite and wood substrates were more stable, and had better biological characteristics and more functional algae species, and thereby were more conducive to providing an ecological effect of periphytic algae in the water environment. [Conclusion] The granite substrate was considered to be the most suitable substrate among the three tested substrates because of its ready availability and ease of use.

    参考文献
    [1] 中华人民共和国生态环境部.中国生态环境质量公报[R].北京:中华人民共和国生态环境部,2021.
    [2] Sládeĉková A.Limnological investigation methods for the periphyton("Aufwuchs") community [J].The Botanical Review, 1962,28(2):286-350.
    [3] Balata D, Bertocci I, Piazzi L, et al.Comparison between epiphyte assemblages of leaves and rhizomes of the seagrass Posidonia oceanica subjected to different levels of anthropogenic eutrophication [J].Estuarine, Coastal and Shelf Science, 2008,79:533-540.
    [4] 徐肖莹.上海市河道附着藻类群落结构特征及其对水环境指示作用的研究[D].上海:上海海洋大学,2017.
    [5] Liboriussen L, Jeppesen E.Structure, biomass, production and depth distribution of periphyton on artificial substratum in shallow lakes with contrasting nutrient concentrations [J].Freshwater Biology, 2006,51:95-109.
    [6] 马牧源,崔丽娟,张曼胤,等.白洋淀附着藻类的初级生产力及其与水质的关系[J].生态学报,2018,38(2):443-456.
    [7] Hoagland K D, Roemer S C and Rosowski J R.Colonization and community structure of two periphyton assemblages, with emphasis on the diatoms(Bacillariophyceae) [J].Amercian Journal Botany, 1982,69:188-213.
    [8] 刘园园,阿依巧丽,张森瑞,等.着生藻类和浮游藻类在三峡库区河流健康评价中的适宜性比较研究[J].生态学报,2020,40(11):3833-3843.
    [9] Granitto M, Lopez M E, Rodriguez P.Periphyton structure and stoichiometry along a gradient of urban land use in sub-antarctic streams from Tierra del Fuego, Argentina [J].Hydrobiologia, 2022,849(16):3515-3529.
    [10] Dodds W K, Smith V H, Lohman K.Nitrogen and phosphorus relationships to benthic algal biomass in temperate streams [J].Canadian Journal of Fisheries and Aquatic Sciences, 2002,59(5):865-874.
    [11] Westhead E K, Pizarro C, Mulbry W W.Treatment of dairy manure effluent using freshwater algae:elemental composition of algal biomass at different manure loading rates [J].Journal of Agricultural and Food Chemistry, 2004,52:7293-7296.
    [12] Dodds W K.The role of periphyton in phosphorus retention in shallow freshwater aquatic systems [J].Journal of Phycology, 2003,39:840-849.
    [13] Jobgen A M, Palm A, Melkonian M.Phosphorus removal from eutrophic lakes using periphyton on submerged artificial substrata [J].Hydrobiologia, 2009,528:123-142.
    [14] Kufel L, Ozimek T.Can Chara control phosphorus cycling in Lake Luknajno(Poland)? [J].Nutrient Dynamics and Biological Structure in Shallow Freshwater and Brackish Lakes, 1994,275:277-283.
    [15] Carlton R G, Wetzel R G.Phosphorus flux from sediments:efect of epipelic algal oxygen production [J].Limnology and Oceanography, 1988,33:562-570.
    [16] Roberts E, Kroker J, Korner S, et al.The role periphyton during the recolonization of a shallow lake with submerged macrophytes [J].Hydrobiologia, 2003,506:525-530.
    [17] 刘霞,陈宇炜.刚毛藻(Cladophora)生态学研究进展[J].湖泊科学,2018,33(9):31-34.
    [18] 田晓萌,裴海燕,徐杭州,等.淡水有害底栖蓝藻研究进展[J].生态学杂志,2020,39(6):2070-2085.
    [19] 周彦锋,周游,尤洋.五里湖人工基质上着生藻类群落结构及其影响因子研究[J].水生态学杂志,2017,38(2):57-64.
    [20] 宋玉芝,张亚冬,郑建伟,等.淡水湖泊附着藻类生态学研究进展[J].生态学杂志,2016,35(2):534-541.
    [21] 裴国凤,刘梅芳.武汉东湖底栖藻类在不同基质上生长的比较[J].湖泊科学,2009,21(3):357-362.
    [22] 陈向.南亚热带两条小型溪流底栖硅藻群落季节变化特征研究[D].广东广州:暨南大学,2012.
    [23] Khatoon H, Yusoff F M D, Banerjee S, et al.Use of peri-phytic cyanobacterium and mixed diatoms coated substrate for improving water quality, survival and growth of Penaeus monodon Fabricius postlarvae [J].Aquaculture, 2007,271:196-205.
    [24] 徐祖信.我国河流综合水质标识指数评价方法研究[J].同济大学学报,2005,33(4):482-488.
    [25] 王纤纤,刘乐乐,杨学芬,等.基于周丛藻类的雅鲁藏布江流域水生态系统健康评价[J].水生生物学报,2022,46(12):1816-1831.
    [26] 薛浩,郑丙辉,孟凡生,等.甘河着生藻类群落结构及其与环境因子的关系[J].生态环境学报,2020,29(2):328-336.
    [27] 宋玉芝,吴雨霏,李浩然.太湖附泥藻类时空分布及其与环境因子的关系[J].环境工程,2023,41(1):18-25.
    [28] 谈冰畅,蔡永久,安苗,等.水体氮质量浓度升高对附着藻生长和元素计量特征的影响[J].生态环境学报,2016,25(8):1376-1381.
    [29] Karez R, Engelbert S, Kraufvelin P, et al.Biomass response and changes in composition of ephemeral macroalgal assemblages along an experimental gradient of nutrient enrichment [J].Aquatic Botany, 2004,78(2):103-117.
    [30] 李晨曦,高雨萱,张佳祺,等.附着在不同微塑料表面的藻类结构与群落组成[J].中国环境科学,2020,40(8):3360-3366.
    [31] 兰波,向贤芬,贾延亭,等.洱海流域沿岸带石质基质上周丛藻类群落研究[J].中国环境科学,2011,31(11):1881-1887.
    [32] Fisher J, Dunbar M J.Towards a representative periphyton diatom sample [J].Hydrology and Earth System Sciences, 2007,11(1):399-407.
    [33] Flynn K F, Chapra S C.Evaluating hydraulic habitat suitability of filamentous algae using an unmanned aerial vehicle and acoustic doppler current profiler [J].Journal of Environmental Engineering, 2020,146(3):1-11.
    [34] 朱宇轩,米武娟,李波,等.南水北调中线干渠两个水工构筑物对着生藻类群落的影响[J].水生生物学报,2021,45(4):817-825.
    [35] 宁晓雨,陶贻亮,梅才华,等.3种人工附着基对富营养水体水质的改善效果比较[J].环境生态学,2021,3(11):63-66,72.
    [36] 陈姗,柳昭莹,张玮,等.上海某河口型景观湖冬季附着藻类的建群过程初探[J].生态与农村环境学报,2019,35(3):345-351.
    [37] 王雅倩,安可婧,黄桂颖,等.不同年份老香黄活性成分、抗氧化活性及挥发性成分分析[J].食品与发酵工业,2023,49(21):221-232.
    [38] 于金慧,尤升波,边斐,等.隐甲藻藻渣醇水提取物的抗氧化活性研究[J].海洋学报,2018,40(8):129-137.
    [39] 何善生.螺旋藻中活性物质的提取、性能及应用[D].福建厦门:集美大学,2018.
    [40] 李树青,杨波,李东方,等.欧李果实不同(成熟)阶段不同部位酚类物质含量比较[J].安徽农业大学学报,2022,49(5):750-754.
    [41] 王梦雪,尹思成,王振方,等.不同颜色聚碳酸酯塑料对附着藻类生长和群落结构的影响[J].环境科学,2023,44(1):243-251.
    [42] 王狄宁,艾克拜尔·依米提,吕海英.新疆北部地区湿地鼓藻类植物多样性及其与环境因子的关系[J].西北植物学报,2022,42(12):2123-2132.
    [43] 张琪,苑博,周静,等.基于附着藻类多样性和TLI的府河水质评价[J].河北大学学报,2020,40(5):536-542.
    [44] 王梦雪.不同塑料基质对周丛藻膜形成和发育的影响[D].上海:上海海洋大学,2022.
    [45] Padisák J, Crossetti L O, Naselli-Flores L.Use and misuse in the application of the phytoplankton functional classification:a critical review with updates [J].Hydrobiologia, 2009,62(1):1-19.
    [46] Wan Juan juan, Liu Xuan, Kerr P G, et al.Comparison of the properties of periphyton attached to modified agro-waste carriers [J].Environmental Science and Pollution Research, 2016,23(4):3718-3726.
    [47] 陈丹,高光,汤祥明,等.人工载体理化性状对附着生物水质修复能力的影响[J].湖泊科学,2013,25(1):39-46.
    [48] 伍良雨,吴辰熙,康杜.载体对周丛生物生物量和群落的影响研究[J].环境科学与技术,2019,42(1):50-57.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赵志淼,陈霆宇,宗兵年,陈瀚驰,鲁仙,陆浩磊,张饮江.水生态环境中不同建材基质附着藻类的生物学特征[J].水土保持通报,2023,43(6):49-56

复制
分享
文章指标
  • 点击次数:131
  • 下载次数: 760
  • HTML阅读次数: 569
  • 引用次数: 0
历史
  • 收稿日期:2023-01-18
  • 最后修改日期:2023-04-19
  • 在线发布日期: 2024-01-29