基于机器学习的东非植被变化因子重要性分析
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

F301.24

基金项目:

国家自然科学基金项目“尼罗河上游丘陵区水土保持与高产高效农业研究”(41561144011),“黄土高原北部冻融作用下物理结皮特性变化对风蚀的影响机理”(42277342),“黄土高原冻融对水蚀过程的作用机理研究”(41771311)


Importance Analysis of Vegetation Change Factors in East Africa Based on Machine Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    [目的] 基于机器学习算法对东非植被变化进行因子重要性分析,测度不同算法在各情况下的精度差异及适用性,为保护、恢复和促进可持续森林管理、水土流失综合防治提供科学依据。[方法] 以东非9个国家2001—2020年的归一化植被指数(normalized difference vegetation index,NDVI)变化为研究对象,选取影响东非植被变化的2个气候因子及5个人类活动因子作为自变量,利用随机森林(random forest,RF)、BP神经网络(BP neural networks,BP)、支持向量机(support vector machines,SVM)、遗传算法(genetic algorithm,GA)、径向基神经网络(radial basis function,RBF)、卷积神经网络(convolutional neural networks,CNN)6种机器学习算法建立NDVI预测模型,以决定系数(R2)、平均绝对误差(MAE,mean absolute error)、平均相对误差(MRE,mean relative error)3个指标评价评估6种机器学习算法预测NDVI变化的潜力,并基于所得的最优模型即对选取的7个因子进行重要性分析。[结果] 精度验证结果表明,研究区内在全因子的情况下,CNN算法的回归精度最差;经逐轮删除一个综合表现不佳的算法后,RF算法建立的模型在东非NDVI变化分析中回归精度较高;基于随机森林算法的不同因子变量对NDVI变化的重要性表明,年降水量、N2O排放量、CH4排放量、牲畜数量4个变量对NDVI变化回归的结果影响较大。[结论] 随机森林算法的回归能力在东非NDVI模拟中具有相对优势,降水量是影响植被变化最重要的气候因子,同时,温室气体的排放对于东非植被的变化也具有一定的影响。东非各国应提高植被变化对气候环境、社会经济和政治制度相互依存关系的认识和理解,并制定适当的政策以促进可持续森林管理、防治荒漠化。

    Abstract:

    [Objective] A factor importance analysis of vegetation changes in East Africa based on different machine learning algorithms was conducted to measure the accuracy and applicability of the different algorithms in order to provide a scientific basis for protecting, restoring, and promoting sustainable forest management and comprehensive prevention and control of soil erosion. [Methods] Changes in normalized difference vegetation index (NDVI) for nine countries in East Africa from 2001 to 2020 were determined. The independent treatment variables were two climatic factors and five human activity factors affecting vegetation changes in East Africa. Six machine learning algorithms were used to establish NDVI prediction models:random forest (RF), BP neural networks (BP), support vector machines (SVM), genetic algorithm (GA), radial basis function (RBF), and convolutional neural networks (CNN). Coefficient of determination (R2), mean absolute error (MAE), and mean relative error (MRE) were used as error indicators to evaluate the potential of the six machine learning algorithms for predicting NDVI changes. Based on the optimal model (RF), the importance of the selected seven factors was determined. [Results] The accuracy verification results showed that the regression accuracy of the CNN algorithm was the worst for the full factor case in the study area. After deleting an algorithm with poor comprehensive performance in each round of testing, the model established by the RF algorithm had the highest regression accuracy for NDVI change analysis in East Africa. The importance of different factor variables to NDVI change based on RF showed that annual precipitation, N2O emission, CH4 emission, and livestock number had the greatest influence on the results of the NDVI change regression. [Conclusion] RF had a comparative advantage for NDVI simulation in East Africa. Precipitation was the most important climatic factor affecting vegetation changes. At the same time, greenhouse gas emissions also had an important impact on vegetation changes in East Africa. East African countries should raise awareness and understanding of the interdependence of vegetation changes on climate, environment, socio-economic conditions, and political systems, and develop appropriate policies to promote sustainable forest management and to combat desertification.

    参考文献
    相似文献
    引证文献
引用本文

张秀梅,马波,张怡捷.基于机器学习的东非植被变化因子重要性分析[J].水土保持通报,2023,43(6):227-236

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-11-14
  • 最后修改日期:2023-03-31
  • 录用日期:
  • 在线发布日期: 2024-01-29
  • 出版日期: