三江源国家公园土壤侵蚀及其分布特征
作者:
作者单位:

水利部水土保持监测中心

中图分类号:

S157

基金项目:

水利部财政预算项目“全国水土流失动态监测项目”(126216229000200002)、国家自然科学基金“基于侵蚀能量过程的集合式流域水土流失预报模型”(U2040208)、国家自然基金面上项目“黄土高原坡面土壤侵蚀特征地带性变化及驱动机制”(42077071)


Soil erosion and its spatial distribution in the Three-River-Source National Park
Author:
Affiliation:

Monitoring Center of Soil and Water Conservation, Ministry of Water Resources

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [41]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    [目的]三江源是“中华水塔”和中国重要生态安全屏障,探讨三江源国家公园土壤侵蚀分布规律对实施生态保护政策至关重要。[方法]利用中国土壤流失方程(CSLE)、风力侵蚀模型和冻融侵蚀强度评价模型,采用叠加分析的方法,分析三江源国家公园土壤侵蚀状况及其在不同空间和下垫面下的分布特征。[结果]2020年公园土壤侵蚀面积2.64×104km2,黄河源园区是土壤侵蚀分布最广泛的园区,而长江源园区土壤侵蚀相对严重;70%的水力侵蚀面积分布在地下冰发育带(海拔4900m以上),85%的风力侵蚀面积分布在地下冰发育带以下区域(海拔4900m以下),不同海拔高度区域土壤侵蚀及其分布差异显著;坡度5°及以下区域风力侵蚀面积占比达60%,是风力侵蚀相对集中分布区;水力侵蚀相对集中分布在8°—25°区域,水力侵蚀面积占比达75%,均是水土流失综合防治的重点区域;草地面积占比近80%,低覆盖、中低覆盖草地土壤侵蚀相对集中分布,沙地、裸土地的土壤侵蚀问题相对严重,值得重点关注。[结论]综合来看,三江源国家公园水力侵蚀主要分布在海拔4900m以上地下冰发育带、8°—35°的中低覆盖以下草地,占水力侵蚀面积的2/3左右;风力侵蚀主要集中分布在4200m—4900m、≤5°的中覆盖度以下草地。研究结果可以为三江源国家公园水土保持与生态文明建设提供基础依据。

    Abstract:

    [Objective] Three-River-Source National Park (TRSNP), which comprises the headwaters of the Yellow, Yangtze and Mekong Rivers, has been described as the ‘Water Tower of Asia’. It is of great importance to explore and analyze the spatial distribution characteristics of soil erosion in the TRSNP. [Methods] Water erosion of the park was assessed using the Chinese Soil Loss Equation (CSLE) integrating rainfall erosivity factor (R) acquired using the daily rainfall data of 5 counties including Zhiduo, QuMalai, Maduo, Zaduo and Tanggula county in Qinghai province during 1986-2015, soil erodibility factor (K) obtained from the First National Water Census for Soil and Water Conservation published by Ministry of Water Resources, P.R.China in 2013, slope length factor (L) and slope steepness factor (S) extracted from the 1:50,000 topographic map, biological control factor (B) estimated by vegetation coverage, and the values of engineering control factor (E) and tillage factor (T) assigned according to the related outcome of the First National Water Conservancy Census. Wind erosion of the TRSNP was evaluated by grass-shrub wind erosion model and sandy-land wind erosion model considering wind erosivity factors based on wind speed during 1991-2015, topsoil moisture factors calculated by AMSR-E level 2A brightness temperature, roughness factors and vegetation coverage. Takes phase transition water content, freeze-thaw cycle days, annual precipitation, slope, slope aspect, vegetation coverage as indexes to evaluate freeze-thaw erosion intensity. [Results] The results showed that the area of 2.64×104km2 suffered from soil erosion, accounting for 21.47% of land area in TRSNP. Among the three sub-parks, the Yellow-River-Source Park possessed with the most extensive soil erosion, in which soil erosion accounting for approximately 50% of the total land areas, twice than that of the TRSNP, whereas one-eighth of the Yangtze-River-Source Park area subject to extremely severe erosion. The elevation in the TRSNP along with the degree of slope, as well as depleted grassland cover were major factors in soil erosion. Water erosion occurred mainly in the area with elevations above an elevation of 4900 m, which occupied 70% of the land area, however, 85% of the wind erosion occurred in zones less than 4900m in elevation. The water erosion areas were mainly located in regions where the slope categories were 8°-25°, and a major part of the wind erosion were widely distributed in slopes between 0° and 5°, all of that needed urgent conservation measures. Grassland was the most important land cover in the TRSNP, which occupied about 80% of the area. Scenarios with different vegetation cover on soil erosion areas showed that low vegetation cover (<30%) and medium-low cover (30%-45%) can considerably caused the loss of soil erosion. Besides, it is worth noting that sandy land and bare land prone to high intensity soil erosion. [Conclusion] In general, Two-thirds of water erosion areas were mainly distributed in zones where the elevation was above 4900m, slope gradients between 8° and 35°, and grassland cover less than 45%. Wind erosion was particularly distributed in an elevation ranging from 4200m to 4900m, the degree of slope less than 5°, and grassland coverage less than 60%. The spatial distribution of soil erosion varied greatly among the sub-areas, demonstrating partition policy should be considered to reduce soil erosion. The present results provide a vital database necessary to control soil erosion in order to ensure sustainable ecological civilization construction in the TRSNP.

    参考文献
    [1] 中共中央办公厅 国务院办公厅印发《建立国家公园体制总体方案》[EB/OL]. 2017-09-26 [2017-09-26]. http://www.gov.cn/zhengce/2017-09/26/content_5227713.htm.
    [2] 孙鸿烈. 水土流失是各类生态退化的集中反映 [J]. 中国水利, 2009(7):1.
    [3] 陈同德, 焦菊英, 王颢霖, 等. 青藏高原土壤侵蚀研究进展 [J]. 土壤学报, 2020, 57(3):547-564.
    [4] 吕乐婷, 任甜甜, 孙才志, 等. 1980—2016 年三江源国家公园水源供给及水源涵养功能时空变化研究 [J]. 生态学报, 2020,40(3): 993-1003.
    [5] 曹巍, 刘璐璐, 吴丹. 三江源国家公园生态功能时空分异特征及其重要性辨识 [J]. 生态学报, 2019, 39(4):1-14.
    [6] 王雅琼, 刘彦, 阿彦, 等. 三江源植被保持土壤能力的时空变化 [J]. 环境科学研究, 2016, 29(7): 1023-1031.
    [7] 刘敏超, 李迪强, 温琰茂, 等. 三江源地区土壤保持功能空间分析及其价值评估 [J]. 中国环境科学, 2005, 25(5): 627-631.
    [8] Jiang Chong, Li Daiqing, Wang Dewang, et al. Quantification and assessment of changes in ecosystem service in the Three-River Headwaters Region, China as a result of climate variability and land cover change [J]. Ecological Indicators, 2016, 66: 199-211.
    [9] 李辉霞, 刘国华, 傅伯杰. 基于 NDVI 的三江源地区植被生长对气候变化和人类活动的响应研究 [J]. 生态学报, 2011, 31(19): 5495-5504.
    [10] 刘世梁, 孙永秀, 赵海迪, 等. 基于多源数据的三江源区生态工程建设前后草地动态变化及驱动因素研究 [J]. 生态学报, 2021,41(10): 3865-3877.
    [11] Hou Jian, Wang Huiqing, Fu Bojie, et al. Effects of plant diversity on soil erosion for different vegetation patterns [J]. Catena, 2016, 147: 632-637.
    [12] 贺倩, 戴晓爱. 基于 LMDI 模型的三江源区植被对土壤侵蚀变化影响的定量分析 [J]. 长江科学院院报, 2020, 37(7): 61.
    [13] 曹巍, 刘璐璐, 吴丹. 三江源区土壤侵蚀变化及驱动因素分析 [J]. 草业学报, 2018, 27(6): 10-22.
    [14] 王钊, 王军邦. 三江源地区2000-2015年土壤侵蚀变化及生态恢复潜在影响研究 (英文) [J]. 资源与生态学报: 英文版, 2019 (5): 461-471.
    [15] He Qian, Dai Xiaoai, Chen Shiqi. Assessing the effects of vegetation and precipitation on soil erosion in the Three-River Headwaters Region of the Qinghai-Tibet Plateau, China [J]. Journal of Arid Land, 2020, 12(5): 865-886.
    [16] 蒋冲, 高艳妮, 李芬, 等. 1956—2010 年三江源区水土流失状况演变 [J]. 环境科学研究, 2017, 30(1): 20-29.
    [17] 高敏, 肖燕, 胡云锋. 不同土地-气候情景下三江源地区产水和水土流失评价 [J]. 资源与生态学报: 英文版, 2020, 11(1): 13-26.
    [18] 李俊杰, 李勇, 王仰麟, 等. 三江源区东西样带土壤侵蚀的137Cs和210Pbex示踪研究 [J]. 环境科学研究, 2009, 22(12): 1452-1459.
    [19] Li Yong, Li Junjie, Are Kayode Steven, et al. Livestock grazing significantly accelerates soil erosion more than climate change in Qinghai-Tibet Plateau: Evidenced from 137Cs and 210Pbex measurements [J]. Agriculture, Ecosystems & Environment, 2019, 285: 106643.
    [20] 黄麟, 邵全琴, 刘纪远. 近30年来青海省三江源区草地的土壤侵蚀时空分析 [J]. 地球信息科学学报, 2011, 13(1): 12-21.
    [21] 陈龙, 谢高地, 张昌顺, 等. 澜沧江流域土壤侵蚀的空间分布特征 [J]. 资源科学, 2012, 34(7): 1240-1247.
    [22] Zhao Yuting, Pu Yanfei, Lin Huilong, et al. Examining Soil Erosion Responses to Grassland Conversation Policy in Three-River Headwaters, China [J]. Sustainability, 2021, 13(5): 2702.
    [23] 肖桐, 邵全琴, 孙文义, 等. 三江源高寒草甸典型坡面草地退化特征综合分析 [J]. 草地学报, 2013, 21(3):452-459.
    [24] 李元寿, 王根绪, 王一博, 等. 长江黄河源区覆被变化下降水的产流产沙效应研究 [J]. 水科学进展, 2006, 17(5): 616-623.
    [25] 李国荣, 李希来, 陈文婷, 等. 黄河源区退化草地水土流失规律 [J]. 水土保持学报, 2017 (5): 51-55.
    [26] Xu Xianli, Zhang Keli, Kong Yaping, et al. Effectiveness of erosion control measures along the Qinghai–Tibet highway, Tibetan plateau, China [J]. Transportation Research Part D: Transport and Environment, 2006, 11(4): 302-309.
    [27] 魏梦美, 符素华, 刘宝元. 青藏高原水力侵蚀定量研究进展 [J]. 地球科学进展, 2021, 36(7): 740-752.
    [28] 林慧龙, 郑舒婷, 王雪璐. 基于 RUSLE 模型的三江源高寒草地土壤侵蚀评价 [J]. 草业学报, 2017, 26(7): 11-22.
    [29] 国务院. 国务院关于同意设立三江源国家公园的批复 [EB/OL]. 2021-10-14 [2021-10-14]. http://www.gov.cn/zhengce/content/2021-10/14/content_5642440.htm.
    [30] 国务院第一次全国水利普查领导小组办公室. 第一次全国水利普查培训教材之六:水土保持情况普查 [M]. 北京:中国水利水电出版社, 2010.
    [31] Liu Baoyuan, Zhang Keli, Xie Yun. An empirical soil loss equation [C]//Proceedings 12th international soil conservation organization conference. Vol. Ⅲ. Tsinghua University Press. Beijing, China, 2002, 2: 15.
    [32] 殷水清, 章文波, 谢云, 刘素红, 刘峰. 基于高密度站网的中国降雨侵蚀力空间分布 [J]. 中国水土保持, 2013(10): 45-51.
    [33] Liu Baoyuan, Xie Yun, Li Zhiguang, et al. The assessment of soil loss by water erosion in China [J] . International Soil and Water Conservation Research, 2020,8(4): 430-439.
    [34] 符素华, 刘宝元, 周贵云, 等. 坡长坡度因子计算工具 [J]. 中国水土保持科学, 2015, 13(5): 105-110.
    [35] 中华人民共和国水利部.SL190—2007 土壤侵蚀分类分级标准[S]. 北京: 中国水利水电出版社, 2008.
    [36] 邹学勇, 张春来, 程宏, 等. 土壤风蚀模型中的影响因子分类与表达 [J]. 地球科学进展, 2014, 8(29):875-889.
    [37] 中华人民共和国水利部. 中国水土保持公报(2020年) [R/OL]. 2020. http://www.mwr.gov.cn/sj/tjgb/zgstbcgb/202109/t20210930_1545971.html.
    [38] 周幼吾, 郭东信. 我国多年冻土的主要特征 [J]. 冰川冻土, 2012, 4(1): 1-19.
    [39] 金会军, 王绍令, 吕兰芝, 等. 黄河源区冻土特征及退化趋势 [J]. 冰川冻土, 2010, 32(1): 10-17.
    [40] 靳铮, 游庆龙, 吴芳营, 等. 青藏高原三江源地区近60a气候与极端气候变化特征分析 [J]. 大气科学学报, 2021, 43(6): 1042-1055.
    [41] 彭珂珊. 水土流失是生态环境恶化的根源 [J]. 地质灾害与环境保护, 2001, 12(2): .25-31.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:224
  • 下载次数: 696
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-07-25
  • 最后修改日期:2023-08-23
  • 录用日期:2023-08-26
  • 在线发布日期: 2023-11-01