Abstract:[Objective] Scientifically constructing the spatial ecological network of the national territory and identifying key areas for ecological restoration is an important guarantee for promoting the integration of mountains, rivers, forests, fields, lakes, grasslands, and sand in regional landscapes. [Method] Taking Zhengzhou as an example, this study used Morphological Spatial Pattern Analysis (MSPA) to identify ecological source areas, extracted ecological corridors and identified key areas for ecological restoration through landscape connectivity assessment and circuit theory, and finally constructed an ecological network security pattern. [Results] There are a total of 37 ecological source areas in Zhengzhou, covering a total area of 983.29 km2, with a distribution pattern of more in the west and less in the east, and a band-like agglomeration in the north-south direction. A total of 85 ecological corridors were extracted in Zhengzhou, with lengths ranging from 0.11 to 47.92 km, totaling 689.50 km. Among them, there are 19 key ecological corridors, 29 important ecological corridors, and 37 general ecological corridors. Fifty-five ecological pinch points were identified, with a total area of 2.78 km2, mainly concentrated in the southwest of Zhengzhou. The locations of these pinch points have low resistance, and the main land types are forests, grasslands, and water bodies. Three levels of obstacle points were classified based on cumulative current values, with a total area of 1054.31 km2, accounting for 14.16% of the study area. These obstacle points are mainly located in urban areas around major transportation roads in Dengfeng City and Xinmi City. Considering the natural and social status quo of the study area, a "one belt, one ring, two zones, four groups, and multiple points" ecological network security pattern was proposed. [Conclusion] Strategies for ecological restoration were proposed for the identified ecological pinch points and obstacle points: the ecological pinch point areas have relatively good ecological environments, so natural ecological maintenance should be the main focus; the obstacle point areas are mainly construction land with high development intensity and human disturbance, so both artificial and natural restoration should be given equal importance. This study can provide reference for the planning of national spatial ecological restoration in Zhengzhou and other municipal spatial ecological restoration.