郑州市国土空间生态修复关键区域识别
DOI:
作者:
作者单位:

1.河南农业大学风景园林与艺术学院;2.郑州市规划勘测设计研究院

作者简介:

通讯作者:

中图分类号:

基金项目:

《郑州市国土空间生态修复规划(2021-2035)》生态环境本底评价专题研究(30802735);中原地区风景园林学科创新引智基地(CXJD2021004);城乡绿地资源调控与景观生态设计学科创新引智地(GXJD006);


Identification of critical areas for ecological restoration of territorial space in Zhengzhou
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    [目的]科学地构建国土空间生态网络和识别国土生态修复关键区域是推进区域山水林田湖草沙一体化的重要保障。[方法]以郑州市为例,利用形态学空间格局分析(MSPA)识别生态源地,通过景观连通性评价与电路理论提取生态廊道、识别生态修复关键区域,最终构建生态网络安全格局。[结果]郑州市生态源地共37个,面积共计983.29km2,呈现西多东少,南北呈带状聚拢分布;提取郑州市85条生态廊道,廊道长度为0.11~47.92km,共计689.50km,其中关键生态廊道19条、重要生态廊道29条、一般生态廊道37条;识别生态夹点55处,总面积2.78km2,多集于郑州市西南部,夹点所处位置阻力较小,土地类型主要以林地、草地、水体为主;将累计电流值划分三种等级障碍点,总面积为1054.31km2,占研究区面积的14.16%,主要位置在登封市与新密市主要交通道路周围的城镇区域;综合考虑研究区自然与社会现状,提出“一带,一环,两区,四团,多点”的生态网络安全格局;[结论]对识别的生态夹点与障碍点分别提出修复策略:生态夹点区域生态环境较好,因此以自然生态维护为主;生态障碍点区域主要为建设用地,开发强度较大,受人类干扰程度较多,因此以人工和自然修复并重的方式为主。研究可以为郑州市国土空间生态修复规划以及其他市域国土空间生态修复提供参考。

    Abstract:

    [Objective] Scientifically constructing the spatial ecological network of the national territory and identifying key areas for ecological restoration is an important guarantee for promoting the integration of mountains, rivers, forests, fields, lakes, grasslands, and sand in regional landscapes. [Method] Taking Zhengzhou as an example, this study used Morphological Spatial Pattern Analysis (MSPA) to identify ecological source areas, extracted ecological corridors and identified key areas for ecological restoration through landscape connectivity assessment and circuit theory, and finally constructed an ecological network security pattern. [Results] There are a total of 37 ecological source areas in Zhengzhou, covering a total area of 983.29 km2, with a distribution pattern of more in the west and less in the east, and a band-like agglomeration in the north-south direction. A total of 85 ecological corridors were extracted in Zhengzhou, with lengths ranging from 0.11 to 47.92 km, totaling 689.50 km. Among them, there are 19 key ecological corridors, 29 important ecological corridors, and 37 general ecological corridors. Fifty-five ecological pinch points were identified, with a total area of 2.78 km2, mainly concentrated in the southwest of Zhengzhou. The locations of these pinch points have low resistance, and the main land types are forests, grasslands, and water bodies. Three levels of obstacle points were classified based on cumulative current values, with a total area of 1054.31 km2, accounting for 14.16% of the study area. These obstacle points are mainly located in urban areas around major transportation roads in Dengfeng City and Xinmi City. Considering the natural and social status quo of the study area, a "one belt, one ring, two zones, four groups, and multiple points" ecological network security pattern was proposed. [Conclusion] Strategies for ecological restoration were proposed for the identified ecological pinch points and obstacle points: the ecological pinch point areas have relatively good ecological environments, so natural ecological maintenance should be the main focus; the obstacle point areas are mainly construction land with high development intensity and human disturbance, so both artificial and natural restoration should be given equal importance. This study can provide reference for the planning of national spatial ecological restoration in Zhengzhou and other municipal spatial ecological restoration.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-07-31
  • 最后修改日期:2023-11-21
  • 录用日期:2023-11-22
  • 在线发布日期: 2024-02-29
  • 出版日期: