基于PSR模型黄河流域甘肃段生态系统健康评价及预测
作者:
作者单位:

1.甘肃农业大学财经学院;2.宁夏理工学院 文学与艺术学院

基金项目:

甘肃省人文社会科学项目“黄河甘肃段生态环境与区域经济协同发展研究”(编号:22ZZ82)资助。


Evaluation and prediction of ecosystem health in the Gansu section of the Yellow River Basin based on the PSR model
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • | | | |
  • 文章评论
    摘要:

    [目的]开展黄河流域甘肃段生态系统健康水平评价研究,为该流域生态保护与高质量发展提供理论参考与决策依据。[方法]基于2011—2021年面板数据,采用PSR模型构建黄河流域甘肃段生态系统健康评价指标体系,运用熵值法和综合指数法对生态系统健康水平进行综合评价,并采用GM—ARIMA模型对未来十年生态系统健康变化进行预测。[结果](1)2011—2021年各市州生态系统健康综合指数整体呈现上升趋势,甘南黄河重要水源补给生态功能区,其中甘南生态系统健康等级为“劣等”,临夏生态系统健康等级由“劣等”向“差等”转变,黄土高原区,其中兰州生态系统健康等级由“中等”向“良好”转变,天水、定西和平凉生态系统健康等级由“劣等”向“差等”转变,白银和庆阳生态系统健康等级处于“劣等”,风沙综合防治区武威生态系统健康等级为“劣等”;(2)2022—2031年生态环境综合指数预测结果呈上升趋势,但生态系统健康等级没有发生明显变化。[结论]黄河流域甘肃段生态系统健康水平整体不高,当前的生态保护和环境改善措施尚未完全解决该地区生态环境面临的挑战,未来需要进一步加强监管和管理,提高该地区生态系统的健康水平。

    Abstract:

    [Objective]To carry out research on the evaluation of the ecosystem health level of the Gansu section of the Yellow River Basin, and to provide theoretical reference and decision-making basis for the ecological protection and high-quality development of the basin.[Methods] Based on the 2011-2021 panel data, the PSR model was used to construct an ecosystem health evaluation index system for the Gansu section of the Yellow River Basin, the entropy value method and the comprehensive index method were used to comprehensively evaluate the ecosystem health level, and the GM-ARIMA model was used to predict the ecosystem health changes in the next ten years.[Results](1) From 2011 to 2021, the overall ecosystem health index of each city and state shows an upward trend, with Gannan ecosystem health in the Gannan Yellow River Important Water Supply Ecological Functional Area, in which Gannan ecosystem health is ranked as "inferior", Linxia ecosystem health from "inferior" to "poor", Loess Plateau Area, in which Lanzhou ecosystem health is ranked as "medium" to "good", Tianshui, Dingxi, and Pingliang ecosystem health is from "inferior" to "poor", Baiyin and Qingyang ecosystem health is in the "inferior" range, and Wuwei, a wind-sand comprehensive prevention and control area, has ecosystem health ranked as "inferior"; (2) The projected results of the ecosystem composite index for the period 2022-2031 show an increasing trend, but there is no significant change in the ecosystem health rating.[Conclusion] The overall level of ecosystem health in the Gansu section of the Yellow River Basin is not high, and current ecological protection and environmental improvement measures have not yet fully resolved the challenges facing the region's ecosystem, which will need to be further strengthened in the future by enhancing regulation and management to improve the health of the region's ecosystems.

    参考文献
    [1] KARR J R, FAUSCH K D, Angermeier PL, et al. Assessing biological integrity in running waters: a method and its rationale[J]. Illinois Natural History Survey Special Publication, 1986(5): 1–28.
    [2] Schaeffer D J,Herricks E E,Kerster H W.Ecosystem health:I.Measuring ecosystem health[J].Environment Management,1998,12(4):445-455.
    [3] Rapport D J,Whitford W G.How ecosystems respond to stress common properties of arid andaquatic systems[J].Bioscience,1989,49(3):193-203.
    [4] Costanza R,D′Arge R,Groot R D,et al,.The value of the world′s ecosystem services and natural capital[J].Nature,1997,387(1):3-15.
    [5] C.S. Fellow, J.E Clapcott, J.W. Udy, S.E. Bunn, B.D. Harch. Benthic metabolism as an indicator of stream ecosystem health [J]. Hydrobiology, 2006, 115 (72): 71-87.
    [6] S.H. Newman, A. Chmura, K Converse, A.M Kilpatrick, N. Patel. Aquatic bird disease and mortality as an indicator of changing ecosystem health [J]. Marine ecology-progress series, 2007, 3 (52): 299-309.
    [7] 麦少芝,徐颂军,潘颖君.PSR模型在湿地生态系统健康评价中的应用[J].热带地理,2005,25(4):317-321.
    [8] ZHANG F, ZHANG J, WU R, et al. Ecosystem health assessment based on DPSIRM framework and health distance model in Nansi Lake, China[J]. Stochastic Environmental Research
    [9] 李政,何伟,潘洪义,等.基于熵权TOPSIS法与ARIMA模型的四川省耕地生态安全动态预测预警[J].水土保持研究,2018,25(3):217-223 2.
    [10] 王晓君,吴敬学,蒋和平.中国农村生态环境质量动态评价及未来发展趋势预测[J].自然资源学报,2017,32(5):864-876.
    [11] 路春燕,卫海燕,白俊燕.基于BP神经网络的城市化发展生态环境压力响应研究——以延安市为例[J].干旱区资源与环境,2012,26(4):61-66.
    [12] 马年圣,支晓娟,宋雨婷.基于PSR和GM(1,1)模型的西藏耕地生态安全评价与预测[J].干旱区资源与环境,2018,32(11):81-86.
    [13] 岳思妤,谈存峰,杨林娟,等.甘肃省泾河流域2010-2019年农村生态环境质量分析及预测[J].水土保持通报,2021,41(5):365-372.
    [14] 魏竞超, 李自涵, 董媛媛. 基于压力-状态-响应(PSR)模型的黄河流域环境安全评价体系法治化研究[J]. 中国环境监测, 2023, 39(01): 19-28.
    [15] 王广州,凡姚申,窦身堂,等.基于DPSIR的黄河口及毗邻海域生态系统健康评价[J].人民黄河,2023,45(6):92-97+162.
    [16] 李中锋,高婕,钟毅.西藏草地生态安全评价研究——基于生态系统服务价值改进的生态足迹模型[J].干旱区资源与环境,2023,37(4):9-19.
    [17] 冉璇,李渊,郭宇龙,等.基于InVEST模型的钱江源国家公园生态系统服务评估及权衡协同关系研究[J].长江流域资源与环境,2023,32(9):1932-1948.
    [18] 李政,何伟,潘洪义,等.基于熵权TOPSIS法与ARIMA模型的四川省耕地生态安全动态预测预警[J].水土保持研究,2018,25(3):217-223+2.
    [19] 王晓君,吴敬学,蒋和平.中国农村生态环境质量动态评价及未来发展趋势预测[J].自然资源学报,2017,32(5):864-876.
    [20] 路春燕,卫海燕,白俊燕.基于BP神经网络的城市化发展生态环境压力响应研究——以延安市为例[J].干旱区资源与环境,2012,26(4):61-66.
    [21] 马年圣,支晓娟,宋雨婷.基于PSR和GM(1,1)模型的西藏耕地生态安全评价与预测[J].干旱区资源与环境,2018,32(11):81-86.
    [22] 岳思妤,谈存峰,杨林娟,等.甘肃省泾河流域2010-2019年农村生态环境质量分析及预测[J].水土保持通报,2021,41(5):365-372.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:171
  • 下载次数: 183
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-12-13
  • 最后修改日期:2024-02-23
  • 录用日期:2024-02-26