甘肃省土地荒漠化时空演变及驱动力分析
作者单位:

山西工程技术学院

中图分类号:

X87

基金项目:

山西省自然科学基金项目(202203021211288)


Analysis of spatiotemporal evolution and driving forces of land desertification in Gansu Province
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [39]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    [目的] 对甘肃省的荒漠化状况及驱动因素进行分析,为该地区荒漠化综合防治及“三北”等生态工程的推进提供科学依据。[方法] 基于植被指数及地表反照率构建了荒漠化差值指数,使用趋势分析、空间自相关分析等方法分析了甘肃省2000-2022年23年间的荒漠化时空分布特征,并利用地理时空加权回归法对其影响因素进行了分析。[结果] ○1甘肃省荒漠化整体呈现出“西北荒东南绿”的特点,西北区域同时受风蚀荒漠化和盐渍化影响,荒漠化最严重,向东南方向荒漠化程度逐渐减轻,中部地区受水土流失影响荒漠化程度较严重,南部区域荒漠化程度较轻;时间上,23年间,甘肃省荒漠化程度逐渐改善,且南部区域改善程度强于北部区域;○2从空间自相关看,甘肃省荒漠化主要表现出聚集特性,即荒漠化程度表现出明显的空间正相关性;○3降雨对缓解荒漠化最有益处,且对西北的影响大于东南,风速和人口会加剧荒漠化的发生,西南部气温升高荒漠化程度会加重,其余区域则相反。[结论] 2000-2022甘肃省荒漠化整体呈改善趋势,西北部荒漠化仍较严重,甘肃省荒漠化的驱动因素存在较明显的时空异质性,最主要的因素为降雨。

    Abstract:

    [Objective] The desertification and its driving factors in Gansu Province was analyzed to provide a scientific basis for the comprehensive prevention and control of desertification and the promotion of ecological projects such as the "Three Norths". [Methods] Trend analysis and spatial autocorrelation analysis were used to characterize the spatial and temporal distribution of desertification in Gansu Province from 2000 to 2022, and geographically and temporally weighted regression was used to analyze the influencing factors. [Results] ○1The overall desertification in Gansu Province presented the characteristics of "desertification in the northwest and greenness in the southeast". The north-west region, which was affected by both wind erosion and salinization, had the most serious desertification, which gradually decreased towards the south-east; the central region, which was affected by soil and water loss, still had a serious degree of desertification; while the south region had a less serious degree of desertification. In terms of time, the degree of desertification in Gansu Province gradually improved during the 23-year period, and the degree of improvement was stronger in the southern region than in the northern region. ○2In terms of spatial autocorrelation, desertification in Gansu Province was mainly characterized by aggregation, i.e., the degree of desertification showed obvious positive spatial correlation. ○3Increased precipitation was most beneficial in mitigating desertification and had a greater impact in the northwest than in the southeast, while wind speed and population exacerbated desertification, and desertification was exacerbated by warmer temperatures in the southwest and vice versa in the rest of the region. [Conclusion] From 2000 to 2022, desertification in Gansu Province showed an improving trend, while desertification in the northwestern part of the province was still serious, and there was obvious spatial and temporal heterogeneity in the drivers of desertification in Gansu Province, and the most important factor affecting desertification was precipitation.

    参考文献
    [1] Kassas M. Desertification: a general review[J]. Journal of Arid Environments,1995,30(2):115-128.
    [2] Rivera-Marin D, Dash J, Ogutu B. The use of remote sensing for desertification studies: A review [J]. Journal of Arid Environments,2022,206:104829.
    [3] Liu Q, Zhang Q, Yan Y, et al. Ecological restoration is the dominant driver of the recent reversal of desertification in the Mu Us Desert (China) [J]. Journal of Cleaner Production,2020,268:122241.
    [4] 敏玉芳,张耀南,康建芳,等.基于MODIS影像的中巴经济走廊荒漠化程度时空动态监测研究 [J].遥感技术与应用,2021,36(04):827-837.
    [5] 王旭,刁兆岩,郑志荣,等.中蒙毗邻草原区荒漠化时空动态研究[J].环境科学研究,2021,34(12): 2935-2944.
    [6] Higginbottom T P, Symeonakis E. Assessing Land Degradation and Desertification Using Vegetation Index Data: Current Frameworks and Future Direction [J]. Remote Sensing,2014,6(10): 9552-9575.
    [7] Lamqadem A A, Saber H, Pradhan B. Quantitative Assessment of Desertification in an Arid Oasis Using Remote Sensing Data and Spectral Index Techniques [J]. Remote Sensing,2018, 10(12):1862.
    [8] 闫峰,吴波.近40a毛乌素沙地荒漠化过程研究[J].干旱区地理, 2013, 36(06): 987-96.
    [9] 钱大文,巩杰,高彦净.近35年黑河中游临泽县荒漠化时空分异及景观格局变化[J].干旱区资源与环境,2015,29(04):85-90.
    [10] 张华,陈蕾.基于线性光谱混合模型(LSMM)的民勤绿洲荒漠化治理效果评价[J].中国沙漠, 2019, 39(03): 145-154.
    [11] Lian J, Zhao X, Li X, et al. Detecting Sustainability of Desertification Reversion: Vegetation Trend Analysis in Part of the Agro-Pastoral Transitional Zone in Inner Mongolia, Chin [J]. Sustainability, 2017, 9(2):211.
    [12] 吕爱锋,周磊,朱文彬.青海省土地荒漠化遥感动态监测[J].遥感技术与应用,2014,29(05):803-811.
    [13] 贾珍珍,巩杰,张影.近35a来疏勒河中下游绿洲化-荒漠化时空变化[J].干旱区研究,2016, 33(06):1294-1302.
    [14] 陈芳,刘虎俊,刘淑娟,等.基于MODIS的蒙古国2003-2017年荒漠化动态监测[J].西北林学院学报, 2019,34(05):167-171.
    [15] 赵文博,冯莉莉,赵安周,等.河北省2000-2017年荒漠化的时空演变及其气候驱动因子[J].水土保持通报,2021,41(04):252-259.
    [16] 王树祥,韩留生,杨骥,等.一种改进的融合多指标荒漠化等级分类方法[J].测绘通报,2021,(04): 8-12.
    [17] 李春娥.新疆土地荒漠化时空变化特征分析[J].测绘科学,2018,43(09):33-39.
    [18] 张博,周伟,张福存.1999-2018年青海省土地退化遥感监测及其驱动力分析[J].水土保持通报, 2020,40(02):120-8+325.
    [19] 杨超,王金亮,李石华,等.抚仙湖流域土地退化动态遥感监测研究[J].遥感技术与应用,2016, 31(02):388-396.
    [20] 李志鹏,曹晓明,丁杰,等. MODIS卫星影像显示的2001—2017年中国荒漠化年度状况[J].中国沙漠, 2019, 39(06): 135-140.
    [21] 曾永年,向南平,冯兆东,等. Albedo-NDVI特征空间及沙漠化遥感监测指数研究[J].地理科学, 2006,26 (01):75-81.
    [22] Feng Y, Wang S, Zhao M, et al. Monitoring of Land Desertification Changes in Urat Front Banner from 2010 to 2020 Based on Remote Sensing Data[J]. Water,2022,14(11):1777.
    [23] 游宇驰,李志威,黄草,等.1990—2016年若尔盖高原荒漠化时空变化分析[J].生态环境学报, 2017,26(10):1671-1680.
    [24] 岳辉,刘英.基于NDVI-Albedo特征空间的陕西省干旱与荒漠化遥感监测[J].西北林学院学报, 2019,34(01):198-205.
    [25] 马雄德,范立民,张晓团,等.陕西省榆林市榆神府矿区土地荒漠化及其景观格局动态变化[J]. 灾害学, 2015, 30 (04): 126-129.
    [26] 李玉,陶从辉,赵泉华.基于EVI-Albedo特征空间的土地荒漠化遥感分类方法[J].遥感信息, 2022,37(05):8-14.
    [27] Huang B, Wu B, Barry M. Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices[J]. International Journal of Geographical Information Science, 2010,24(3):383-401.
    [28] 薛华柱,金磊,董国涛等.河西走廊近40年地表土壤冻融状态变化特征[J].水土保持学报,2023, 37 (06):65-73+82.
    [29] Montero P, Vilar J A. TSclust: An R package for time series clustering[J].Journal of Statistical Software,2015,62(1):1-43.
    [30] 郑佳翔,孙桂丽,苏香玲等.阿克苏地区荒漠化变化趋势及其驱动因素[J].水土保持通报, 2022, 42 (04): 278-285.
    [31] 孙技星,钟成,何宏伟等.2000—2015年中国土地荒漠化连续遥感监测及其变化[J].东北林业大学学报, 2021, 49 (03): 87-92.
    [32] 宁立波,杨俊仓.民勤县土地荒漠化遥感分析[J].湖南科技大学学报(自然科学版),2013,28 (02):115-119.
    [33] 刘玉璋,董光荣,李长治.影响土壤风蚀主要因素的风洞实验研究[J].中国沙漠,1992, (04): 44-52.
    [34] 朱震达,崔书红.中国荒漠化土地分布地域特征及其治理措施的评估[J].中国环境科学, 1996, (05):328-334.
    [35] 马龙,王静茹,刘廷玺等.2000—2012年科尔沁沙地植被与气候因子间的响应关系[J].农业机械学报,2016,47 (04):162-172.
    [36] 李伯祥,陈晓勇,徐雯婷.基于DEM校正TVDI的华北地区旱情监测分析[J].东华理工大学学报(自然科学版),2019,42 (03):266-273.
    [37] 汪震,姜勇彪,岳兵.江西吉泰盆地荒漠化时空变化特征及影响因素分析[J].东华理工大学学报(自然科学版),2021,44 (02):150-155.
    [38] 何鹏杰,张恒嘉,王玉才等.河西地区临泽县土地荒漠化影响因素分析[J].环境工程,2016,34 (S1):1111-1116.
    [39] 魏伟,俞啸,张梦真,等.1995—2018年石羊河流域下游荒漠化动态变化[J].应用生态学报,2021,32(06):2098-2106.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-27
  • 最后修改日期:2024-02-17
  • 录用日期:2024-02-26