基于精细化数据的广州市番禺区内涝淹没风险研究
作者:
中图分类号:

P333.2;P933;X43

基金项目:

广州市城市规划勘测设计研究院科技资助项目“测绘大数据支持的城市地下空间灾害风险评估与应用”(RDP2220201041);广东省城市感知与监测预警企业重点实验室资助项目(2020B121202019);广州市资源规划和海洋科技协同创新中心项目(2023B04J0301);广东省重点领域研发计划资助(2020B0101130009)


Inundation Risk at Panyu District of Guangzhou City Simulated by Refined Survey and Mapping Data
Author:
  • Gan Liqin

    Gan Liqin

    Guangzhou Urban Planning & Design Survey Research Institute Co., Ltd, Guangzhou, Guangdong 510060, China;Collaborative Innovation Center for Natural Resources Planning and Marine Technology of Guangzhou, Guangzhou, Guangdong 510060, China;Guangdong Enterprise Key Laboratory for Urban Sensing, Monitoring and Early Warning, Guangzhou, Guangdong 510060, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • Cheng Mingyu

    Cheng Mingyu

    Guangzhou Urban Planning & Design Survey Research Institute Co., Ltd, Guangzhou, Guangdong 510060, China;Collaborative Innovation Center for Natural Resources Planning and Marine Technology of Guangzhou, Guangzhou, Guangdong 510060, China;Guangdong Enterprise Key Laboratory for Urban Sensing, Monitoring and Early Warning, Guangzhou, Guangdong 510060, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 利用精细化测绘调查数据开展城市降雨径流过程模拟,旨在盘活国土资源数据资产和促进城市内涝风险精准管控。[方法] 以广东省广州市番禺区为研究区,基于高精度的地形和建筑数据,采用SCS-CN径流模型和GIS技术,模拟不同强度暴雨情境下的城市内涝淹没深度,定量分析研究区内涝淹没风险空间分布特征,同时结合承灾体灾损经验模型,对洪灾损失风险进行评估,识别高发易损规划管理单元。[结果] ①番禺区内涝淹没风险区空间上呈现河涌与城市低洼地区聚集状态,临近市桥-沙湾水道、三枝香-大石水道的街镇存在着较高的淹没风险。②随着暴雨强度增加,农业用地和建设用地将受到最严重的影响。③在100 a一遇暴雨情形下,番禺区4个规划管理单元处于高损失风险,损失主要来自住宅建筑,而处于中等损失风险的单元主要面临农业耕地淹没损失。[结论] 通过精细化的测绘数据建模,从地块级别成功识别了番禺区潜在易淹没高损失区域,与实际情况较为符合,提高了风险研判的精细度,能够为城市内涝治理和海绵城市规划建设高质量发展提供技术支持。

    Abstract:

    [Objective] Refined survey and mapping data were used to simulate urban rainfall and runoff processes in order to activate land resource data assets and to promote precise urban flood risk management and control.[Methods] The study was conducted in the Panyu District of Guangzhou City. The SCS-CN runoff model and GIS technology were used to simulate the depth of urban flood inundation under different intensity rainstorm situations on the basis of high-precision topographic and architectural data in order to quantitatively analyze the characteristics of inundation risk in the study area. Additionally, a loss experience model of disaster-bearing bodies was used to assess flood loss risk and to identify highly vulnerable areas.[Results] ① The flood inundation risk area in Panyu District was spatially clustered with rivers and low-lying urban areas, and the streets and towns near the Shiqiao-Shawan watershed and the Sanzhixiang-Dashi watershed had higher inundation risks. ② Agricultural land and construction land were expected to be most severely affected as the intensities of rainstorms increased. ③ For the case of a 100-year rainstorm, four planning management units in Panyu District were at high risk of loss, and their losses mainly came from residential buildings, while the units facing medium risk of loss were mainly associated with agricultural land inundation.[Conclusion] Refined survey and mapping data can effectively identify the distribution of high loss areas that are prone to potential inundation. These results are in line with the actual situation. The study results can provide advance research and planning support for urban flood control and sponge city development and construction.

    参考文献
    [1] Zhao Gang, Pang Bo, Xu Zongxue, et al. Assessment of urban flood susceptibility using semi-supervised machine learning model[J]. Science of the Total Environment, 2019,659:940-949.
    [2] Yao Lei, Wei Wei, Yu Yang, et al. Rainfall-runoff risk characteristics of urban function zones in Beijing using the SCS-CN model[J]. Journal of Geographical Sciences, 2018,28(5):656-668.
    [3] Fan Fenglei, Deng Yingbin, Hu Xuefei, et al. Estimating composite curve number using an improved SCS-CN method with remotely sensed variables in Guangzhou, China[J]. Remote Sensing, 2013,5(3):1425-1438.
    [4] 马丽君,王传涛,王雯军,等.基于SCS-CN模型的郑州市区域产流特征研究[J].水土保持通报,2022,42(4):203-209. Ma Lijun, Wang Chuantao, Wang Wenjun, et al. Regional runoff characteristics in Zhengzhou City based on SCS-CN model[J]. Bulletin of Soil and Water Conservation, 2022,42(4):203-209.
    [5] 陈文龙,夏军.广州"5·22"城市洪涝成因及对策[J].中国水利,2020(13):4-7. Chen Wenlong, Xia Jun. Analysis of causes and countermeasures of extraordinary rainstorm in 22nd, May, Guangzhou[J]. China Water Resources, 2020(13):4-7.
    [6] 陈明发,马星,赵耀龙,等.城市更新视角下面向内涝防治的地表空间布局优化[J].水利水运工程学报,2023(3):19-28. Chen Mingfa, Ma Xing, Zhao Yaolong, et al. Optimal design of surface layout for alleviating urban flood in urban renewal[J]. Hydro-Science and Engineering, 2023(3):19-28.
    [7] Wang Peng, Li Yabo, Yu Ping, et al. The analysis of urban flood risk propagation based on the modified susceptible infected recovered model[J]. Journal of Hydrology, 2021,603:127121.
    [8] 丁锶湲,王宁,倪丽丽,等.基于SCS-CN与GIS耦合模型的闽三角城市群承灾空间淹没风险研究[J].灾害学,2022,37(1):171-177. Ding Siyuan, Wang Ning, Ni Lili, et al. Study on the inundation risk of disater space in the Min Delta Urban Agglomeration based on SCS-CN and GIS coupling model[J]. Journal of Catastrophology, 2022,37(1):171-177.
    [9] 徐宗学,陈浩,任梅芳,等.中国城市洪涝致灾机理与风险评估研究进展[J].水科学进展,2020,31(5):713-724. Xu Zongxue, Chen Hao, Ren Meifang, et al. Progress on disaster mechanism and risk assessment of urban flood/waterlogging disasters in China[J]. Advances in Water Science, 2020,31(5):713-724.
    [10] 高凯,杨志勇,高希超,等.城市洪涝损失评估方法综述[J].水利水电技术(中英文),2021,52(4):57-68. Gao Kai, Yang Zhiyong, Gao Xichao, et al. A review of the evaluation methods of urban flood loss[J]. Water Resources and Hydropower Engineering, 2021,52(4):57-68.
    [11] Lin Jinyao, He Peiting, Yang Liu, et al. Predicting future urban waterlogging-prone areas by coupling the maximum entropy and FLUS model[J]. Sustainable Cities and Society, 2022,80:103812.
    [12] Band S S, Janizadeh S, Chandra Pal S, et al. Flash flood susceptibility modeling using new approaches of hybrid and ensemble tree-based machine learning algorithms[J]. Remote Sensing, 2020,12(21):3568.
    [13] Fang Zhice, Wang Yi, Peng Ling, et al. Predicting flood susceptibility using LSTM neural networks[J]. Journal of Hydrology, 2021,594:125734.
    [14] 汤鹏,王玮,张展,等.海绵城市建设中建成区雨洪格局的量化研究[J].南京林业大学学报(自然科学版),2018,42(1):15-20. Tang Peng, Wang Wei, Zhang Zhan, et al. Quantitative research on rain-flood patterns of urban area in the construction of" Sponge Cities"[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2018,42(1):15-20.
    [15] 苏鑫,邵薇薇,刘家宏,等.基于情景模拟的洪涝灾害经济损失动态评估[J].清华大学学报(自然科学版),2022,62(10):1606-1617. Su Xin, Shao Weiwei, Liu Jiahong, et al. Dynamic assessment of economic losses from flood disaters based on scenario simulations[J]. Journal of Tsinghua University (Science and Technology), 2022,62(10):1606-1617.
    [16] 查斌,刘成帅,杨帆,等.基于MIKE FLOOD模型的城市洪涝灾害场景推演研究[J].人民黄河,2022,44(11):53-58. Zha Bin, Liu Chengshuai, Yang Fan, et al. Study on scenarion deduction of urban flood disaster based on MIKE FLOOD model[J]. Yellow River, 2022,44(11):53-58.
    [17] 叶陈雷,徐宗学,雷晓辉,等.基于InfoWorks ICM的城市洪涝模拟及其风险分析:以福州市白马河片区为例[J].北京师范大学学报(自然科学版),2021,57(6):784-793. Ye Chenlei, Xu Zongxue, Lei Xiaohui, et al. InfoWorks ICM flood simulation and risk analysis:Case of Baima River district, Fuzhou[J]. Journal of Beijing Normal University (Natural Science Edition), 2021,57(6):784-793.
    [18] 黄华兵,王先伟,柳林.城市暴雨内涝综述:特征、机理、数据与方法[J].地理科学进展,2021,40(6):1048-1059. Huang Huabing, Wang Xianwei, Liu Lin. A review on urban pluvial floods:Characteristics, mechanisms, data and research methods[J]. Progress in Geography, 2021,40(6):1048-1059.
    [19] 白天,吴雅文,金牧青,等.基于GIS技术的漯河城市不同用地类型产流及淹没风险分析[J].中国城市林业,2018,16(6):14-19. Bai Tian, Wu Yawen, Jin Muqing, et al. Runoff and inundation risk analysis of different land uses based on GIS in Luohe City[J]. Journal of Chinese Urban Forestry, 2018,16(6):14-19.
    [20] Wang Kai, Wu Yan, Fan Qingdong. Construction of rainstorm security pattern based on waterlogging prevention and control:A case study on Zhengzhou City[J]. Alexandria Engineering Journal, 2022,61(11):8911-8918.
    [21] Zhang Yongling, Zhou Miao, Kong Nana, et al. Evaluation of emergency response capacity of urban pluvial flooding public service based on scenario simulation[J]. International Journal of Environmental Research and Public Health, 2022,19(24):16542.
    [22] 中华人民湱玌?晏漿犌?捡槺璾槨攮珎?沅憝挲殻榀港柄?携慇瑂愠嬵?崲?′?搲瘰愱渷捛敓獝?椗溬?圭懽璡攒狺?匾挬椲攰渱挷攮???の??????????は???????扮牤?孕?ぢ嵡??楒畵?奡潬渠杄穥桶楥??婰潭略?婴栠敯湦礠畴??圠畐??慰楬晥攧湳朠??数瑵?慬汩??副敦琠牃慨捩瑮敡搮?牔慥楣湨獮瑩潣牡浬?晣汯潤潥搠?汯潲猠獵?慢湡慮氠祦獬楯獯?慩湮摧?数癲慥汶略慮瑴楩潯湮?浡潮摤攠汣孯?嵴????????渱琲攲爲渭愲琰椱漷湛慓汝??潂湥晩敪物敮湧挺敃?潩湮?匠浐慬牡瑮??楮瑧礠?慲湥摳?匬礠猲琰攱洷献??湲朾楛渲攳敝爠椊湷朂????卡?厾???乘漚瘮斤洖抒攴犾?ㄇ???自?特?????栲愰渲朱獛桓慝??梬椺渭懽???????‰有?????????????扯牵?孩??崠??楤渠?坲敢楡扮椭湒??卡畬渠?奯楮浳楴湲??乴楩橯桮甠楍獡?卡??敭瑥?慴氠??卭捭敩湴慴牥楥漮?打慴獡敮摤?晲汤漠潦摯?爠楤獥歳?慧獮猠敯獦猠浯敵湴瑤?景潲爠?畡牳扴慥湷楡穴楥湲朠?摮敧汩瑮慥獥?畩獮楧渺杇?映电琰田爱攴?氲愰渲搱?畓獝攮?獂楥浩番汩慮瑧椺潃湨????啐卬???畩慮湧朠穐桲潥畳??攲琰爱漷瀮漼汢楲琾慛渲??爠敨愩?愬王?慳?掸懗珗攬?献瓺疎摇祉孓?崅??厇揺椡旕滫挟旄‰澅暝?瑩桛敊?吮漭瓽懙水??測瘲椰爱漵測洳攱渨琲??呼?日??????ㄠ???????扡牮?孩??崬?婗桡慮潧??慥湰杩??堬甠?婵漠湍杩硡畯敭??偯愬渠来??潡??攠瑁?慳汩???湩?敩湥桤愠湇捉敓搭?楡湳略湤搠慨瑹楤潲湯?浯敧瑩档潡摬?晭潯牤?畬物扮慧渠?晰汰潲潯摡?桨愠穦慯牲搠?浡慰灩灤椠湦杬?慯瑤?瑲桩敳?氠慡牳杳敥?捳慭瑥据桴浛敊湝琮?獃捨慩汮敡嬠?嵡???漦畗牡湳慴汥?潡晴??礬搠爲漰氱漵本礳??有?ㄩ????????????资??戵牝?宁??崬??榩測??榉測祉愮漍???攎‰塨榄慁濶祺痸???當?句業秞愂渻??攺璋?慊汝???湦皥攬猲琰椲朰愬琲椴渨朲?琺栱攸′椭渱昹永甮攠湙捡敯?潚晨?瑸桩牮攬攠?摥楮浧攠湑獩楮潧湹慡汮?戠畓極汮搠楚湨来?捨潵湩昬椠来畴爠慡瑬椮漠湔?潭湰?畲牡扬愠湡?灤氠畳癰楡慴汩?晬氠潣潯摲楲湥杬?畴獩楯湮朠?牥慴湷摥潥浮?晩潭牰敥獲瑶?慯汵杳漠牳極瑲桦浡季?崠???渠癳極牲潦湡浣敥渠瑲慵汮?剦敦猺敁愠牣捡桳???ぴ???ㄠ?????づ????n urban area of Hangzhou City[J]. Journal of Remote Sensing, 2020,24(2):182-198.
    [26] 沈黎达,李瑶,李东臣,等.复杂下垫面城市暴雨内涝汇水区划分方法研究[J].水资源与水工程学报,2019,30(6):50-58. Shen Lida, Li Yao, Li Dongchen, et al. Study on dividing method of rainstorm waterlogging catchment area in urban area with complex underlying surface[J]. Journal of Water Resources and Water Engineering, 2019,30(6):50-58.
    [27] Qin Rongzhu, Zhao Zeyu, Xu Jia, et al. HRLT:a high-resolution (1 d,1 km) and long-term (1961-2019) gridded dataset for surface temperature and precipitation across China[J]. Earth System Science Data, 2022,14(11):4793-4810.
    [28] 许剑辉,赵怡,钟凯文,等.基于改进线性光谱解混和SCS-CN模型的广州主城区降雨产流模拟[J].热带地理,2016,36(6):969-975. Xu Jianhui, Zhao Yi, Zhong Kaiwen, et al. Runoff simulation of main urban area in Guangzhou City based on the improved linear spectral mixture analysis and SCS-CN models[J]. Tropical Geography, 2016,36(6):969-975.
    [29] 吕鸿,吴泽宁,管新建,等.缺资料城市洪灾损失率函数构建方法及应用[J].水科学进展,2021,32(5):707-716. Lyu Hong, Wu Zening, Guan Xinjian, et al. Construction methods and applications of flood loss rate functio
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

淦立琴,程铭宇.基于精细化数据的广州市番禺区内涝淹没风险研究[J].水土保持通报,2024,44(1):127-135

复制
分享
文章指标
  • 点击次数:100
  • 下载次数: 676
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-03-31
  • 最后修改日期:2023-07-18
  • 在线发布日期: 2024-04-26