2000—2020年阿克苏河流域植被动态变化及驱动机制
作者:
中图分类号:

P237

基金项目:

国家自然科学基金项目“棉花秸秆生物碳对盐渍土中重金属吸附效应及作用机制研究”(21767025);塔里木大学校长资助项目“基于3S技术的沙雅县土壤水盐时空变化监测”(TDZKQN201816)


Dynamics Changes and Driving Mechanisms of Vegetation in Aksu River Basin from 2000 to 2020
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 探究阿克苏河流域植被动态特征及其与潜在影响因子的响应关系,为干旱区生态环境保护和治理提供理论依据。[方法] 基于MODIS归一化植被指数(NDVI)、气候、地形、土壤类型及土地利用等数据,利用趋势分析和地理探测器方法对2000-2020年阿克苏河流域植被动态及驱动机制进行分析。[结果] ①2000-2020年阿克苏河流域NDVI呈显著增加趋势,增速为0.003 2/a,且人类活动区增速显著大于非人类活动区。②潜在因子对NDVI变化的解释力存在时间和空间差异;土地利用转化是人类活动区NDVI变化重要驱动因子,海拔、土壤类型、距冰川积雪距离、距水体距离是非人类活动区NDVI变化重要驱动因子。因子间交互作用可以提高对NDVI变化的解释力,在人类活动区土地利用转化与土壤类型的相互作用对NDVI变化的解释力最强;背景因子、距补给水源的距离与其他因子的交互是非人类活动区NDVI变化的重要因子组合。③2000-2020年阿克苏河流域超过10 %的面积发生土地利用转化,主要表现为裸地和草地的相互转化,耕地、林地、灌木地、人造地表面积显著增加。[结论] 阿克苏河流域人类活动区和非人类活动区NDVI变化时空特征及驱动机制存在差异,应因地制宜,合理管理,促使该流域生态环境良性发展。

    Abstract:

    [Objective] The characteristics of vegetation dynamic changes and their response relationship with potential impact factors in the Aksu River basin were determined in order to provide a theoretical basis for ecological environmental protection and governance in arid areas.[Methods] Based on MODIS normalized difference vegetation index (NDVI), climate, topography, soil type, and land use data, the dynamics and driving mechanisms of vegetation changes in Aksu River basin from 2000 to 2020 were analyzed using trend analysis and geographical detector methods.[Results] ① The NDVI of the Aksu River basin showed a significant increasing trend from 2000 to 2020, with a growth rate of 0.003 2/yr. The growth rate in the anthropogenic areas was significantly larger than in the non-anthropogenic areas. ② There were temporal and spatial differences in the explanatory power of potential factors for NDVI changes. Land use conversion was an important driving factor for NDVI changes in anthropogenic areas. Elevation, soil type, distance from glacier snowpack, and distance from water bodies were important driving factors for NDVI changes in non-anthropogenic areas. Interaction among factors increased the explanatory power of NDVI changes, and land use conversion interacting with soil type had the strongest explanatory power of NDVI changes in the anthropogenic areas. The interaction among background factors, distance from recharge water sources and other factors was an important combination of factors for NDVI changes in the anthropogenic areas. ③ More than 10 % of the area of the Aksu River basin in 2000-2020 underwent land use conversion, mainly in the form of mutual conversion of bare land and grassland, and a significant increase in the area of cropland, woodland, shrubland, and man-made land surface.[Conclusion] The spatial and temporal characteristics and driving mechanism of NDVI change in human activity area and non-human activity area in Aksu River basin are different. It is necessary to manage the Aksu River basin reasonably according to local conditions to promote the benign development of ecological environment in the basin.

    参考文献
    [1] Piedallu C, Chéret V, Denux J P, et al. Soil and climate differently impact NDVI patterns according to the season and the stand type[J]. Science of the Total Environment, 2019,651:2874-2885.
    [2] Cao Ruyin, Chen Yang, Shen Miaogen, et al. A simple method to improve the quality of NDVI time-series data by integrating spatiotemporal information with the Savitzky-Golay filter[J]. Remote Sensing of Environment, 2018,217:244-257.
    [3] 孙瑞,张方敏,翁升恒,等.2001-2021年中国NDVI时空格局变化及对气候的响应[J].中国环境科学,2023,43(10):5519-5528. un Rui, Zhang Fangmin, Weng Shengheng, et al. Spatio-temporal changes of NDVI and its response to climate in China from 2001 to 2021[J]. China Environmental Science, 2023,43(10):5519-5528.
    [4] Kumari N, Saco P M, Rodriguez J F, et al. The grass is not always greener on the other side:Seasonal reversal of vegetation greenness in aspect-driven semiarid ecosystems[J]. Geophysical Research Letters, 2020,47(15):e2020GL088918.
    [5] Zhang Ying, Zhang Chaobin, Wang Zhaoqi, et al. Vegetation dynamics and its driving forces from climate change and human activities in the Three-River Source Region, China from 1982 to 2012[J]. Science of the Total Environment, 2016,563/564210-220.
    [6] Nemani R R, Keeling C D, Hashimoto H, et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999[J]. Science, 2003,300(5625):1560-1563.
    [7] Zhu Lijun, Meng Jijun, Zhu Likai. Applying Geodetector to disentangle the contributions of natural and anthropogenic factors to NDVI variations in the middle reaches of the Heihe River basin[J]. Ecological Indicators, 2020,117:106545.
    [8] Chu Hongshuai, Venevsky S, Wu Chao, et al. NDVI-based vegetation dynamics and its response to climate changes at Amur-Heilongjiang River basin from 1982 to 2015[J]. Science of the Total Environment, 2019,650:2051-2062.
    [9] Liu Ya, Li Yan, Li Shuangcheng, et al.Spatial and temporal patterns of global NDVI trends:Correlations with climate and human factors[J]. Remote Sensing, 2015,7(10):13233-13250.
    [10] Song Wenqi, Feng Yuhao, Wang Zhiheng. Ecological restoration programs dominate vegetation greening in China[J]. Science of the Total Environment, 2022,848:157729.
    [11] 王一,郝利娜,许强,等.2001-2019年黄土高原植被覆盖度时空演化特征及地理因子解析[J].生态学报, 2023,43(6):2397-2407. Wang Yi, Hao Lina, Xu Qiang, et al. Spatio-temporal variations of vegetation coverage and its geographical factors analysis on the Loess Plateau from 2001 to 2019[J]. Acta Ecologica Sinica, 2023,43(6):2397-2407.
    [12] 王星,霍艾迪,吕继强,等.塔里木河干流植被覆盖度动态变化及驱动因素分析[J].农业工程学报,2023,39(8):284-292. Wang Xing, Huo Aidi, Lyu Jiqiang, et al. Dynamic changes and driving factors of vegetation coverage in the mainstream of Tarim River, China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023,39(8):284-292.
    [13] 杨振民,刘新平.新疆阿克苏河流域生态承载力监测及安全格局构建[J].干旱区地理,2021,44(5):1489-1499. Yang Zhenmin, Liu Xinping. Ecological carrying capacity monitoring and security pattern construction in the Aksu River Basin, Xinjiang[J]. Arid Land Geography, 2021,44(5):1489-1499.
    [14] Wang Yang, Xia Tingting, Shataer R, et al. Analysis of characteristics and driving factors of land-use changes in the Tarim River Basin from 1990 to 2018[J]. Sustainability, 2021,13(18):10263.
    [15] Aishan T, Halik ?, Betz F, et al. Stand structure and height-diameter relationship of a degraded Populus euphratica forest in the lower reaches of the Tarim River, Northwest China[J]. Journal of Arid Land,2015,7(4):544-554.
    [16] 王劲峰,徐成东.地理探测器:原理与展望[J].地理学报,2017,72(1):116-134. Wang Jinfeng, Xu Chengdong. Geodetector:principle and prospective[J]. Acta Geographica Sinica, 2017,72(1):116-134.
    [17] 凡晚晴,吴华,樊风雷.近20年来西藏地区NPP时空变化及影响因素[J].水土保持通报,2022,42(6):378-386. Fan Wanqing, Wu Hua, Fan Fenglei. Spatial-temporal variation of net primary productivity and its influencing factors in Tibet over past 20 years[J]. Bulletin of Soil and Water Conservation, 2022,42(6):378-386.
    [18] Ouyang Rulin, Cheng Weiming, Wang Weisheng, et al. Research on runoff forecast approaches to the Aksu River basin[J]. Science in China (Series D:Earth Sciences), 2007,50(1):16-25.
    [19] Disse M. Sustainable land and water management of River Oases along the Tarim River[J]. Proceedings of the International Association of Hydrological Sciences, 2016,373:25-29.
    [20] Yang Peng, Xia Jun, Zhang Yongyong, et al. How is the risk of hydrological drought in the Tarim River basin, Northwest China[J]. Science of the Total Environment, 2019,693:133555.
    [21] Wang Jinfeng, Li Xinhu, Christakos G, et al. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun ???畩潯??攠湃杨摩楮??噊敝朮攠瑉慮瑴楥潲湮?慴畩瑯畮浡湬?灊桯敵湲潮污潬朠祯?愠湇摥?楧瑲獡?牨敩獣灡潬渠獉敮獦?瑲潭?整湩癯楮爠潓湣浩敥湮瑣慥氬?挲栰愱渰本攲猴?椱温?琱栰攷?洱椲搷?格楢杲栾?氲愲瑝椠璋疐摨攬珩?澉昬?瓊栬敉?乔濌爨璳桁旟爟渰??旊涺楻猻炨栺斦犄时?戔愖獹斁搔?潛湊?牏敌浝漮琭旽‰猨攨渲猰椲渳札‰搵愭琱愶嬩?崠???桰敳渺术搯畫??匮楣据桫畩愮湮?啴港楫癣敭牳猯楤瑥祴?潩晬??氱攮挱琱父漷渮楐挮′匰挲椳攰渵挱攵?愱渷搱?吮攰挰栶渮潨汴潭杬礮?潗晡??栠楌湵慣????㈠???戠版?孩??嵩??桚敨湡?卧栠慊潵祮甬愠湥??婡桬愮渠杓?奡畴汩潯渭杴??坰畯?兡楬愠潥汶楯??整瑩?慮氠??嘠敬条敮瑤愠瑵楳潥渠?獮瑤爠畨捵瑭畡牮愠污?捴桩慶湩杴敹?慩湮摴??佳?獴畹戠????獨略戠??晲敩牭琠楒汩楶穥慲琠楢潡湳?浮漬爠敘?瑮桪慩湡?潧晛晊猯敏瑌?朮爠潇獥獯?灯牧楹洠慩牮礠?灨物潮摡甠挨琲椰漲渳?搰攵挭氱椶温攮?捨慴畴獰敳携?戯祫?牳攮摣畮捫敩搮?獥潴氯慫牣?牳愯摤楥慴瑡楩潬港?椱渮??栶椷渮慐嬮?崰?″?朵爱椵挮由氷琱甶爮愰氰?愮湨摴??漮爼敢獲琾??攳瑝攠潊物潡汮潧朠祎??で水ㄠ?????ㄠけ??ぱ??, Zhang Sicong, et al. Spatial and temporal evolutions of vegetation coverage in the Tarim River basin and their responses to phenology[J]. Catena, 2022,217:106489.
    [24] Hou Yifeng, Chen Yaning, Ding Jianli, et al. Ecological impacts of land use change in the arid Tarim River basin of China[J]. Remote Sensing, 2022,14(8):1894.
    [25] Sun Fan, Wang Yi, Chen Yaning, et al. Historic and simulated desert-oasis ecotone changes in the arid Tarim River basin, China[J]. Remote Sensing, 2021,13(4):647.
    [26] Zhao Ruifeng, Chen Yaning, Shi Peiji, et al. Land use and land cover change and driving mechanism in the arid inland river basin:A case study of Tarim River, Xinjiang, China[J]. Environmental Earth Sciences, 2013,68(2):591-604.
    [27] Dimri A P, Palazzi E, Daloz A S. Elevation dependent precipitation and temperature changes over Indian Himalayan region[J]. Climate Dynamics, 2022,59(1):1-21.
    [28] 邓铭江,石泉.内陆干旱区水资源管理调控模式[J].地球科学进展,2014,29(9):1046-1054. Deng Mingjiang, Shi Quan. Management and regulation pattern of water resource in inland arid regions[J]. Advances in Earth Science, 2014,29(9):1046-1054.
    [29] Wen Youyue, Liu Xiaoping, Xin Qinchuan, et al. Cumulative effects of climatic factors on terrestrial vegetation growth[J]. Journal of Geophysical Research (Biogeosciences), 2019,124(4):789-806.
    [30] Lian Xu, Piao Shilong, Chen Anping, et al. Seasonal biological carryover dominates northern vegetation growth[J]. Nature Communications, 2021,12:983.
    [31] 郭梦迪.北半球中高纬植被秋季物候遥感提取及其环境响应机制[D].四川成都:电子科技大学,2021
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

许丽,岳胜如,胡雪菲.2000—2020年阿克苏河流域植被动态变化及驱动机制[J].水土保持通报,2024,44(1):326-334

复制
分享
文章指标
  • 点击次数:199
  • 下载次数: 437
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-05-27
  • 最后修改日期:2023-08-07
  • 在线发布日期: 2024-04-26