基于PLUS-InVEST模型的珠三角碳储量时空演变与预测
作者:
中图分类号:

X87;F301.2

基金项目:

国家自然科学基金项目“基于卫星对地观测技术的广西'山’字型构造时空演变特征研究”(42164001);广西2022年自治区级职业教育专业教学资源库建设项目(GZ202220);广西2022年本科教育教学重点项目建设经费(602030389173301)


Spatiotemporal Evolution and Prediction of Carbon Storage in Pearl River Delta Based on PLUS and InVEST Models
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 探究珠三角地区2005-2020年土地利用变化及其对碳储量的影响,并对2035年珠三角的土地利用格局和碳储量进行模拟预测,以期为珠三角地区"双碳"目标下的国土空间规划和生态决策提供科学依据。[方法] 基于2005-2020年4期土地利用数据,以珠三角城市群为研究区域,采用PLUS模型和InVEST模型对该区的土地利用变化和碳储量演变进行分析,并预测其2035年土地利用空间格局和碳储量变化趋势。[结果] ①2005-2020年,珠三角地区碳储量先增加后减少,林地、建设用地和未利用地增多促进碳储量增长了4.82×107 t,耕地、草地和水域减少导致碳储量减少了5.10×107 t。②预计2035年,随着建设用地和林地的增加,该区碳储量较2020年增长5.75×107 t,生态环境向好发展。③该区碳储量表现出"四周高,中部低"的空间分布格局,与土地利用空间分布具有显著一致性,即碳储量高值区集中在林地、耕地和草地,碳储量低值区集聚在建设用地。[结论] 随着未来城市发展需要,政府部门应进行土地综合开发利用,采取生物、工程技术等生态修复措施,提升区域固碳能力,助力实现碳中和目标。

    Abstract:

    [Objective] The land use change and its impact on carbon storage was studied from 2005 to 2020, and the land use pattern and carbon storage in the Pearl River Delta in 2035 were simulated and predicted, in order to provide a scientific basis for the territorial spatial planning and ecological decision-making under the dual carbon goal in the Pearl River delta region.[Methods] Based on land use data for four periods from 2005 to 2020, land use change and carbon storage evolution in the Pearl River delta urban agglomeration were analyzed by using the PLUS model and the InVEST model. The spatial pattern of land use and the carbon storage change trend in 2035 were predicted.[Results] ①From 2005 to 2020, carbon stocks initially increased and then decreased. The increased area of forest land, construction land, and unused land increased carbon stocks by 4.82×107 t, and the decreased area of cultivated land, grassland and water area decreased carbon stocks by 5.10×107 t. ② In 2035, with an expected increase of construction land and forest land, carbon storage will increase by 5.75×107 t compared with 2020, and the ecological environment will improve. ③ Carbon storage showed a spatial distribution pattern of "higher in the surrounding areas and lower in the middle" that was significantly consistent with the spatial distribution of land use, i.e., the high-value carbon storage areas were concentrated in forest land, cultivated land, and grassland, and the low-value carbon storage areas were concentrated in construction land.[Conclusion] With the needs of future urban development, government departments should carry out comprehensive land development and utilization, adopt ecological restoration measures based on biological and engineering technology, and improve regional carbon sequestration capacity so as to achieve carbon neutrality.

    参考文献
    [1] Houghton R A. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850-2000[J]. Tellus Series B:Chemical and Physical Meteorology, 2003,55(2):378-390.
    [2] 王海军,武悦,邓羽,等.基于城市流和层级性的城市群扩展模型构建[J].地理学报,2021,76(12):3012-3024. Wang Haijun, Wu Yue, Deng Yu, et al. Model construction of urban agglomeration expansion simulation considering urban flow and hierarchical characteristics[J]. Acta Geographica Sinica, 2021,76(12):3012-3024.
    [3] 李传华,赵军,师银芳,等.基于变异系数的植被NPP人为影响定量研究:以石羊河流域为例[J].生态学报,2016,36(13):4034-4044. Li Chuanhua, Zhao Jun, Shi Yinfang, et al. The impact of human activities on net primary productivity based on the coefficient of variation:A case study of the Shiyang River basin[J]. Acta Ecologica Sinica, 2016,36(13):4034-4044.
    [4] 位盼盼,昝梅.伊犁地区土地覆被变化及其对植被碳储量的影响[J].西北林学院学报,2020,35(4):158-166. Wei Panpan, Zan Mei. Changes of land coverage and the impact on vegetation carbon storage in Yili region[J]. Journal of Northwest Forestry University, 2020,35(4):158-166.
    [5] 陈耀亮,罗格平,叶辉,等.1975-2005年中亚土地利用/覆被变化对森林生态系统碳储量的影响[J].自然资源学报,2015,30(3):397-408. Chen Yaoliang, Luo Geping, Ye Hui, et al. Sources and sinks of carbon caused by forest land use change from 1975 to 2005 in central Asia[J]. Journal of Natural Resources, 2015,30(3):397-408.
    [6] 赵俊芳,曹云,马建勇,等.基于遥感和FORCCHN的中国森林生态系统NPP及生态服务功能评估[J].生态环境学报,2018,27(9):1585-1592. Zhao Junfang, Cao Yun, Ma Jianyong, et al. Evaluation of NPP and ecological service function of China's forest ecosystem based on remote sensing and FORCCHN[J]. Ecology and Environmental Sciences, 2018,27(9):1585-1592.
    [7] 石晶,石培基,王梓洋,等.基于PLUS-InVEST模型的酒泉市生态系统碳储量时空演变与预测[J].环境科学,2024,45(1):300-313. Shi Jing, Shi Peiji, Wang Ziyang, et al. Spatiotemporal evolution and prediction of ecosystem carbon storage in Jiuquan City based on PLUS-InVEST model[J].Environmental Science, 2024,45(1):300-313.
    [8] 李月,罗红芬.基于InVEST模型的黔中喀斯特地区建设用地扩张碳储量变化研究[J].西北林学院学报,2024,39(1):185-192 Li Yue, Luo Hongfen.Study on the change of carbon storage of construction land expansion in karst area of central Guizhou Province based on InVEST model[J/OL]. Journal of Northwest Forestry University, 2024,39(1):185-192
    [9] 邹文涛,何友均,叶兵,等.基于InVEST模型的森林生态系统服务功能评估研究进展[J].世界林业研究,2020,33(4):19-24. Zou Wentao, He Youjun, Ye Bing, et al. Research advances in forest ecosystem services evaluations based on the InVEST model[J]. World Forestry Research, 2020,33(4):19-24.
    [10] 曹祺文,顾朝林,管卫华.基于土地利用的中国城镇化SD模型与模拟[J].自然资源学报,2021,36(4):1062-1084. Cao Qiwen, Gu Chaolin, Guan Weihua. SD model and simulation of China's urbanization based on land use[J].Journal of Natural Resources, 2021,36(4):1062-1084.
    [11] Yang Xin, Chen Ren, Zheng Xuan Qi. Simulating land use change by integrating ANN-CA model and landscape pattern indices[J]. Geomatics, Natural Hazards and Risk, 2016,7(3):918-932.
    [12] 杨洁,谢保鹏,张德罡.基于InVEST和CA-Markov模型的黄河流域碳储量时空变化研究[J].中国生态农业学报(中英文),2021,29(6):1018-1029. Yang Jie, Xie Baopeng, Zhang Degang. Spatio-temporal evolution of carbon stocks in the Yellow River Basin based on InVEST and CA-Markov models[J]. Chinese Journal of Eco-Agriculture, 2021,29(6):1018-1029.
    [13] 高周冰,王晓瑞,隋雪艳,等.基于FLUS和InVEST模型的南京市生境质量多情景预测[J].农业资源与环境学报,2022,39(5):1001-1013. Gao Zhoubing, Wang Xiaorui, Sui Xueyan, et al. Multi-scenario prediction of habitat quality in Nanjing based on FLUS and InVEST models[J]. Journal of Agricultural Resources and Environment, 2022,39(5):1001-1013.
    [14] 柯新利,唐兰萍.城市扩张与耕地保护耦合对陆地生态系统碳储量的影响:以湖北省为例[J].生态学报,2019,39(2):672-683. Ke Xinli, Tang Lanping. Impact of cascading processes of urban expansion and cropland reclamation on the ecosystem of a carbon storage service in Hubei Province, China[J]. Acta Ecologica Sinica, 2019,39(2):672-683.
    [15] 刘晓娟,黎夏,梁迅,等.基于FLUS-InVEST模型的中国未来土地利用变化及其对碳储量影响的模拟[J].热带地理,2019,39(3):397-409. Liu Xiaojuan, Li Xia, Liang Xun, et al. Simulating the change of terrestrial carbon storage in China based on the FLUS-InVEST model[J]. Tropical Geography, 2019,39(3):397-409.
    [16] 王旭,马伯文,李丹,等.基于FLUS模型的湖北省生态空间多情景模拟预测[J].自然资源学报,2020,35(1):230-242. Wang Xu, Ma Bowen, Li Dan, et al. Multi-scenario simulation and prediction of ecological space in Hubei Province based on FLUS model[J]. Journal of Natural Resources, 2020,35(1):230-242.
    [17] 丁岳,王柳柱,桂峰,等.基于InVEST模型和PLUS模型的环杭州湾生态系统碳储量[J].环境科学,2023,44(6):3343-3352. Ding Yue, Wang Liuzhu, Gui Feng, et al. Ecosystem carbon storage in Hangzhou Bay area based on InVEST and PLUS models[J]. Environmental Science, 2023,44(6):3343-3352.
    [18] 孙欣欣,薛建辉,董丽娜.基于PLUS模型和InVEST模型的南京市生态系统碳储量时空变化与预测[J].生态与农村环境学报,2023,39(1):41-51. Sun Xinxin, Xue Jianhui, Dong Lina. Spatiotemporal change and prediction of carbon storage in Nanjing ecosystem based on PLUS model and InVEST model[J]. Journal of Ecology and Rural Environment, 2023,39(1):41-51.
    [19] 孙方虎,方凤满,洪炜林,等.基于PLUS和InVEST模型的安徽省碳储量演化分析与预测[J].水土保持学报,2023,37(1):151-158. Sun Fanghu, Fang Fengman, Hong Weilin, et al. Evolution analysis and prediction of carbon storage in Anhui Province based on PLUS and InVEST model[J]. Journal of Soil and Water Conservation, 2023,37(1):151-158.
    [20] Jiang Yefeng, Huang Mingxiang, Chen Xueyao, et al. Identification and risk prediction of potentially contaminated sites in the Yangtze River Delta[J]. Science of the Total Environment, 2022,815:151982.
    [21] 杨朔,苏昊,赵国平.基于PLUS模型的城市生态系统服务价值多情景模拟:以汉中市为例[J].干旱区资源与环境,2022,36(10):86-95. Yang Shuo, Su Hao, Zhao Guoping. Multi-scenario simulation of urban ecosystem service value based on PLUS model:A case study of Hanzhong city[J]. Journal of Arid Land Resources and Environment, 2022,36(10):86-95.
    [22] 王洁宁,王文超,海蒙蒙.基于PLUS模型的山东省土地利用变化模拟分析[J].国土与自然资源研究,2022(6):1-8. Wang Jiening, Wang Wenchao, Hai Mengmeng. Simulation analysis of land use change in Shandong Province based on PLUS model[J]. Territory&Natural Resources Study, 2022(6):1-8.
    [23] Liang Xun, Guan Qingfeng, Clarke K C, et al. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model:A case study in Wuhan, China[J]. Computers, Environment and Urban Systems, 2021,85:101569.
    [24] 巩晟萱,张玉虎,李宇航.基于PLUS-InVEST模型的京津冀碳储量变化及预测[J].干旱区资源与环境,2023,37(6):20-28. Gong Shengxuan, Zhang Yuhu, Li Yuhang. Spatio-temporal variation and prediction of carbon storage in Beijing-Tianjin-Hebei region:A PLUS-InVEST model approach[J]. Journal of Arid Land Resources and Environment, 2023,37(6):20-28.
    [25] 伍丹,朱康文,张晟,等.基于PLUS模型和InVEST模型的成渝经济区碳储量演化分析[J].三峡生态环境监测,2022,7(2):85-96. Wu Dan, Zhu Kangwen, Zhang Sheng, et al. Evolution analysis of carbon stock in Chengdu-Chongqing economic zone based on PLUS model and InVEST model[J]. Ecology and Environmental Monitoring of Three Gorges, 2022,7(2):85-96.
    [26] 张经度,梅志雄,吕佳慧,等.纳入空间自相关的FLUS模型在土地利用变化多情景模拟中的应用[J].地球信息科学学报,2020,22(3):531-542. Zhang Jingdu, Mei Zhixiong, Lv Jiahui, et al. Simulating multiple land use scenarios based on the FLUS model considering spatial autocorrelation[J]. Journal of Geo-Information Science, 2020,22(3):531-542.
    [27] 王保盛,廖江福,祝薇,等.基于历史情景的FLUS模型邻域权重设置:以闽三角城市群2030年土地利用模拟为例[J].生态学报,2019,39(12):4284-4298. Wang Baosheng, Liao Jiangfu, Zhu Wei, et al. The weight of neighborhood setting of the FLUS model based on a historical scenario:A case study of land use simulation of urban agglomeration of the Golden Triangle of Southern Fujian in 2030[J]. Acta Ecologica Sinica, 2019,39(12):4284-4298.
    [28] 吴佩君,刘小平,黎夏,等.基于InVEST模型和元胞自动机的城市扩张对陆地生态系统碳储量影响评估:以广东省为例[J].地理与地理信息科学,2016,32(5):22-28. Wu Peijun, Liu Xiaoping, Li Xia, et al. Impact of urban expansion on carbon storage in terrestrial ecosystems based on InVEST model and CA:A case study of Guangdong Province, China[J]. Geography and Geo-Information Science, 2016,32(5):22-28.
    [29] 刘萍,邓鉴峰,魏安世,等.广州市森林生物量及碳储量评估[J].西南林业大学学报,2015,35(4):62-65. Liu Ping, Deng Jianfeng, Wei Anshi, et al. Assessment on urban forest biomass and carbon storage in Guangzhou[J]. Journal of Southwest Forestry University, 2015,35(4):62-65.
    [30] 朱志强,马晓双,胡洪.基于耦合FLUS-InVEST模型的广州市生态系统碳储量时空演变与预测[J].水土保持通报,2021,41(2):222-229. Zhu Zhiqiang, Ma Xiaoshuang, Hu Hong. Spatio-temporal evolution and prediction of ecosystem carbon stocks in Guangzhou city by coupling FLUS-InVEST models[J]. Bulletin of Soil and Water Conservation,2021,41(2):222-229.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

廖超明,韦媛媛,云子恒,谭绵方,唐丹.基于PLUS-InVEST模型的珠三角碳储量时空演变与预测[J].水土保持通报,2024,44(1):410-420

复制
分享
文章指标
  • 点击次数:192
  • 下载次数: 625
  • HTML阅读次数: 440
  • 引用次数: 0
历史
  • 收稿日期:2023-07-06
  • 最后修改日期:2023-09-02
  • 在线发布日期: 2024-04-26