带状砂沟模式下土壤入渗过程模拟研究
作者:
中图分类号:

S152.72

基金项目:

国家自然科学基金项目“竖管滴灌节水控温理论研究及其在固沙植物幼苗保育中的应用”(51969013); 省部共建西北旱区生态水利国家重点实验室(西安理工大学)开放研究基金项目“带状砂沟模式下土壤增渗机理及入渗模型研究”(2020KFKT-6)


Simulation Investigation of Soil Infiltration Process for Banded Sand Ditches
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献 [4]
  • | | |
  • 文章评论
    摘要:

    [目的] 探究土壤质地类型和砂沟结构参数对土壤入渗过程的影响,为砂沟集雨工程设计、运行和管理提供科学依据。 [方法] 基于HYDRUS-2D/3D软件,建立带状砂沟模式下土壤水分运动数学模型,利用室内试验验证模拟带状砂沟模式下土壤入渗过程的可靠性。在此基础上,模拟分析不同影响因素下带状砂沟模式下土壤累积入渗量和湿润锋运移变化过程。 [结果] 模拟结果与实测数据无显著性差异且一致性良好,表明所建模型及其求解方法能够有效获取带状砂沟模式下不同时刻土壤累积入渗量和湿润锋运移距离数值;均质土壤填充带状砂沟存在明显的增渗效应。原土质地、砂沟距、砂沟宽和砂沟深均对增渗率有较大影响,增渗率随原土饱和导水率和砂沟距的增大而减小,随砂沟宽和砂沟深的增大而增大;土壤湿润锋轮廓呈下低上高的U形,随时间的延长,U形侧边湿润锋逐渐靠近砂沟交汇面,顶部平台逐渐消失;原土质地对湿润锋运移距离影响较大,湿润体随原土饱和导水率的增大而增大;砂沟深对湿润锋的形态和分布影响较大,随砂沟深度的增大,U字体型垂向拉伸,左侧湿润深度显著增大,右侧湿润深度变化微弱;砂土质地、砂沟距和砂沟宽对湿润锋运移距离影响较小。[结论] 带状砂沟土体构型能够显著提高土壤入渗能力,土壤质地类型和砂沟结构参数对土壤累积入渗量和湿润锋运移距离均有不同程度影响。

    Abstract:

    [Objective] The influences of soil texture types and parameters of banded sand ditches on soil infiltration processes were studied in order to provide scientific evidence for the design, operation, and management of sand ditch rainwater harvesting projects. [Methods] HYDRUS-2D/3D software was used to establish a mathematical model for soil water movement in a banded sand ditch, and the reliability of simulating the soil infiltration process in a banded sand ditch model was verified using laboratory experiments. The cumulative infiltration and movement of the wetting front under different influencing factors in a banded sand ditch were simulated and analyzed. [Results] The simulated results were consistent with the measured data. The results showed no significant differences, indicating that the established model and its solution method can effectively produce the numerical values of cumulative soil infiltration and wetting front movement at different times in banded sand ditches. There was a significant increase in infiltration in homogeneous soil filled with banded sand ditches. The original soil texture, sand ditch spacing, sand ditch width and sand ditch depth all significantly impacted infiltration rate. Infiltration rate decreased with an increase in the original soil saturated hydraulic conductivity and sand ditch spacing, but increased with an increase in sand ditch width and depth. The soil-wetting front profile formed a U-shaped pattern with a lower front and a higher back. With time, the U-shaped side-wetting front gradually approached the intersection of the sand ditch, and the top plateau gradually disappeared. The original soil texture significantly impacted the migration distance of the wetting front, which increased with an increase in the original soil saturated hydraulic conductivity. Sand ditch depth significantly impacted the shape and distribution of the wetting front. With an increase in sand ditch depth, the U-shaped pattern stretched vertically, and the wetting depth on the left side increases significantly. The change in wetting depth on the right side was minimal. Sand soil texture, sand ditch spacing, and sand ditch width had relatively minor impacts on the migration distance of the wetting front. [Conclusion] Banded sand ditch structures can significantly improve soil infiltration capacity. Soil texture types and sand ditch structure parameters have different effects on soil cumulative infiltration and wetting front migration distance.

    参考文献
    [1] 刘锦月,巩铁雄,乔江波,等.近期气候变化对黄土高原苹果产区分布格局的影响[J].水土保持研究,2020,27(3):153-158. Liu Jinyue, Gong Tiexiong, Qiao Jiangbo, et al. Effects of recent climate change on distribution pattern of apple production areas in the Loess Plateau[J]. Research of Soil and Water Conservation, 2020,27(3):153-158.
    [2] 温慧娴,赵西宁,高飞.黄土高原不同降水量区苹果园土壤干燥化效应及生产水足迹模拟[J].应用生态学报,2022,33(7):1927-1936. Wen Huixian, Zhao Xining, Gao Fei. Simulation of soil desiccation effects and production water footprint of apple orchards in different precipitation areas of the Loess Plateau, China[J]. Chinese Journal of Applied Ecology, 2022,33(7):1927-1936.
    [3] Fan Yanwei, Zhu Chunyan, Bai Guilin, et al. Numerical simulation of soil water movement by gravity subsurface hole irrigation[J]. Water Supply, 2022,22(7):6389-6404.
    [4] 赵西宁,吴普特,冯浩,等.黄土高原半干旱区集雨补灌生态农业研究进展[J].中国农业科学,2009,42(9):3187-3194. Zhao Xining, Wu Pute, Feng Hao, et al. Advance in research of supplemental irrigation of collected rain water for eco-agriculture in semi-arid Loess Plateau of China[J]. Scientia Agricultura Sinica, 2009,42(9):3187-3194.
    [5] Bhatnagar P, Srivastava R. Gravity-fed drip irrigation system for hilly terraces of the Northwest Himalayas[J]. Irrigation Science, 2003,21(4):151-157.
    [6] 张惠茹,许航,宋健峰.西北地区农业灌溉用水反弹的影响因素分析[J].灌溉排水学报,2021,40(8):129-135. Zhang Huiru, Xu Hang, Song Jianfeng. What caused the irrigation water use rebound in Northwest China?[J]. Journal of Irrigation and Drainage, 2021,40(8):129-135.
    [7] 陶虎,张少英,万冰清,等.湿陷性黄土地区一种雨水收集装置:埋深对变形影响的试验研究[J].水利学报,2019,50(7):894-902. Tao Hu, Zhang Shaoying, Wan Bingqing, et al. Experimental study on the effect of buried depth of a rainwater collecting device on deformation in collapsible loess area[J]. Journal of Hydraulic Engineering, 2019,50(7):894-902.
    [8] 吴晨,李发文,冯平,等.设施农业雨水集蓄利用与番茄灌溉方案优化[J].农业工程学报,2021,37(21):153-162. Wu Chen, Li Fawen, Feng Ping, et al. Rainwater harvesting and tomato irrigation schemes optimization for facilities agriculture[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021,37(21):153-162.
    [9] 梁磊,孙浩田,徐高明,等.田间原位试验分析长期机械作业下稻麦轮作地块土壤入渗性能[J].农业工程学报,2023,39(7):110-118. Liang Lei, Sun Haotian, Xu Gaoming, et al. Soil infiltration of rice-wheat rotation field under long-term mechanical treatment based on field in situ experiments[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023,39(7):110-118.
    [10] 马雪燕,穆兴民,王双银,等.黄土丘陵区不同植被恢复对土壤入渗影响及适宜模型研究[J].水土保持学报,2023,37(2):67-75. Ma Xueyan, Mu Xingmin, Wang Shuangyin, et al. Study on the effects of different vegetation restoration on soil infiltration and suitable models in the loess hilly region[J]. Journal of Soil and Water Conservation, 2023,37(2):67-75.
    [11] Abu-Zreig M, Attom M, Hamasha N. Rainfall harvesting using sand ditches in Jordan[J]. Agricultural Water Management, 2000,46(2):183-192.
    [12] Abu-Zreig M, Tamimi A. Field evaluation of sand-ditch water harvesting technique in Jordan[J]. Agricultural Water Management, 2011,98(8):1291-1296.
    [13] Abu-Zreig M, Fujimaki H, Abd Elbasit M A. Enhancing water infiltration through heavy soils with sand-ditch technique[J]. Water, 2020,12(5):1312-1326.
    [14] 赵伟霞,张振华,蔡焕杰,等.砂沟滴灌技术参数模型[J].水科学进展,2009,20(6):845-850. Zhao Weixia, Zhang Zhenhua, Cai Huanjie, et al. Model for estimating technical parameters of sand furrow irrigation[J]. Advances in Water Science, 2009,20(6):845-850.
    [15] Widomski M K, Sobczuk H, Olszta W. Sand-filled drainage ditches for erosion control:effects on infiltration efficiency[J]. Soil Science Society of America Journal, 2010,74(1):213-220.
    [16] 冀荣华,王婷婷,祁力钧,等.基于HYDRUS-2 D的负压灌溉土壤水分入渗数值模拟[J].农业机械学报,2015,46(4):113-119. Ji Ronghua, Wang Tingting, Qi Lijun, et al. Numerical simulation of soil moisture infiltration under negative pressure irrigation based on HYDRUS-2D[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015,46(4):113-119.
    [17] 范严伟,杨志伟,胡五龙.均质土微润灌湿润体模型构建及验证[J].农业工程学报,2020,36(13):83-91. Fan Yanwei, Yang Zhiwei, Hu Wulong. Establishment and validation of wetting pattern model of moistube irrigation in homogeneous soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020,36(13):83-91.
    [18] Wang Chunying, Mao Xiaomin, Hatano R. Modeling ponded infiltration in fine textured soils with coarse interlayer[J]. Soil Science Society of America Journal, 2014,78(3):745-753.
    [19] Xie Haowen, Wu Yawen, Wang Luping, et al. Comparing simulations of green roof hydrological processes by SWMM and HYDRUS-1D[J]. Water Supply, 2019,20(1):130-139.
    [20] Saito T, Yasuda H, Fujimaki H, et al. Numerical calculation of soil water movement in a water harvesting system with sand ditches using HYDRUS-2D[J]. Journal of Arid Land Studies, 2012,22(1):215-218.
    [21] 王社平,王子健,张志强,等.下凹式绿地中垂直土壤夹砂层的侧向防渗效果研究[J].中国给水排水,2021,37(9):116-121. Wang Sheping, Wang Zijian, Zhang Zhiqiang, et al. Lateral anti-seepage effect of vertical soil sand layer in sunken lawn[J]. China Water&Wastewater, 2021,37(9):116-121.
    [22] Richards L A. Capillary conduction of liquids through porous mediums[J]. Physics, 1931,1(5):318-333.
    [23] Mualem Y. A new model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resources Research, 1976,12(3):513-522.
    [24] Van Genuchten M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980,44(5):892-898.
    [25] Moriasi D N, Arnold J G, van Liew M W, et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations[J]. Transactions of the Asabe, 2007,50(3):885-900.
    [26] Carsel R F, Parrish R S. Developing joint probability distributions of soil water retention characteristics[J]. Water Resources Research, 1988,24(5):755-769.
    [27] Young M H, Karagunduz A,Šim[AKv。]nek J, et al. A modified upward infiltration method for characterizing soil hydraulic properties[J]. Soil Science Society of America Journal, 2002,66(1):57-64.
    [28] 范严伟,黄宁,马孝义,等.应用HYDRUS-1D模拟砂质夹层土壤入渗特性[J].土壤,2016,48(1):193-200. Fan Yanwei, Huang Ning, Ma Xiaoyi, et al. Simulation of infiltration characteristics in soil with sand interlayer using HYDRUS-1D[J]. Soils, 2016,48(1):193-200.
    [29] Li Jiake, Zhao Ruisong, Li Yajiao, et al. Modeling the effects of parameter optimization on three bioretention tanks using the HYDRUS-1D model[J]. Journal of Environmental Management, 2018,217:38-46.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

范严伟,梁金宇.带状砂沟模式下土壤入渗过程模拟研究[J].水土保持通报,2024,44(2):22-31

复制
分享
文章指标
  • 点击次数:132
  • 下载次数: 521
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-09-06
  • 最后修改日期:2023-11-04
  • 在线发布日期: 2024-06-05