峰丛洼地石漠化区景观格局的形态学特征及空间演变规律
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

P931.5

基金项目:

国家自然科学基金项目“岩溶地区聚落空间格局与石漠生态系统演变耦合关系研究”(32260420); 云南省科技厅计划项目“光伏太阳能利用模式对石漠生态系统碳汇影响效应及其调控策略”(202401AS070014)


Morphological Characteristics and Spatial Evolution Laws of Landscape Patterns at Peak-cruster Depressions in Rocky Desertification Areas
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    [目的] 探究峰丛洼地石漠化区景观格局的形态学空间分布特征,为揭示峰丛洼地石漠化区景观格局动态变化和生态保护的可持续发展提供理论参考和指导。[方法] 利用形态学空间分析(MSPA)方法对岩溶石漠化景观识别、处理、分类得到核心、环线等互不重叠的7类景观类型,应用景观动态度、景观格局指数、景观转移矩阵和热点分析探究峰丛洼地石漠化区景观格局的形态学时空演变特征。 [结果] ①2000年形态学景观类型分布最广(190.60 km2),2022年分布最少(147.32 km2),在形态学景观类型中核心是研究区内主要的景观类型,2000年面积最大为121.62 km2,2022年面积最少为76.05 km2,主要分布在研究区西北部和南部区域;孤岛在形态学景观类型中面积最小,其面积1990年最少为1.12 km2,2022年最多为3.07 km2,孤岛和分支等景观类型分散分布在各核心之间。 ②研究区形态学景观空间分布趋于分散,且形态学景观多样性、复杂程度和景观破碎化程度增加;研究时段内,形态学景观类型单一动态度分别为0.10,-0.18和-2.13,说明形态学景观面积呈现收缩趋势并且形态学景观类型1990—2000年发育最为剧烈,2000—2010年发育最为平缓。 ③形态学景观类型转移方向主要是核心景观类型转移为边缘和孔隙景观类型,总体来看形态学景观主要转移方向是形态学景观转移为背景,并且背景的转入量大于转出量。高—高聚集区域呈现出向磨合村、老街村和安乐村扩张的趋势,低—低聚集区域呈现出向三光村和老街村扩张的趋势。 [结论] 研究区形态学景观面积处于快速减少阶段且形态学景观类型趋于复杂,核心是主要的形态学景观类型,形态学景观的演变特征主要由核心的变化导致。

    Abstract:

    [Objective] The morphological spatial distribution characteristics of landscape patterns at peak-cluster depressions in rocky desertification areas were determined in order to provide theoretical reference and guidance for revealing the dynamic changes in landscape pattern and ecological protection of peak-cluster depression rocky desertification areas. [Methods] Morphological spatial pattern analysis (MSPA) was used to identify, process, and classify rocky desertification landscapes in order to obtain seven non-overlapping landscape types such as core and loop lines. Landscape dynamics, landscape pattern index, landscape transfer matrix, and hotspot analysis were applied to determine the morphological spatiotemporal evolution characteristics of landscape patterns in peak-cluster depression rocky desertification areas. [Results] ① In 2000, the morphological landscape types were the most widely distributed (190.60 km2), and in 2022, they were the least distributed (147.32 km2). Among the morphological landscape types, the core was the main landscape type in the study area, with a maximum area of 121.62 km2 in 2000 and a minimum area of 76.05 km2 in 2022, mainly located in the northwest and southern regions of the study area. The area of isolated islands was the smallest among the morphological landscape types, with a minimum of 1.12 km2 in 1990 and a maximum of 3.07 km2 in 2022. Landscape types such as isolated islands and branches were scattered among various cores. ② The spatial distribution of morphological landscapes in the research area tended to be dispersed, and the diversity, complexity, and fragmentation of morphological landscapes increased. During the research period, the single dynamic degrees of morphological landscape types were 0.10, -0.18, and -2.13, respectively, indicating a shrinking trend in morphological landscape area. The development of morphological landscape types was most intense from 1990 to 2000, and the development was most gentle from 2000 to 2010. ③ The main direction of morphological landscape type transfer was the transfer of the core landscape type to the edge and pore landscape types. Overall, the main direction of morphological landscape transfer was the transfer of the morphological landscape to the background, and the amount of background transfer in was greater than the amount of transfer out. High-high agglomeration areas showed a trend of expansion towards Runhe, Laojie, and Anle Village, while low-low agglomeration areas showed a trend of expansion towards Sanguang and Laojie Village. [Conclusion] The main monitoring indicators for disaster chain early warning include cumulative rainfall, duration of rainfall, changes in moisture content, and on-site monitoring of slope deformation development. These monitoring parameters are influenced by various factors such as rainfall conditions, soil properties, slope angle, and external dynamic conditions. Therefore, in practical applications, it is necessary to comprehensively consider these factors.

    参考文献
    相似文献
    引证文献
引用本文

林广,王妍,刘云根,徐劲成,林品.峰丛洼地石漠化区景观格局的形态学特征及空间演变规律[J].水土保持通报,2024,44(2):333-344,377

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-12-15
  • 最后修改日期:2024-02-23
  • 录用日期:
  • 在线发布日期: 2024-06-05
  • 出版日期: