基于CF与优化RF模型耦合的泰山地区地质灾害易发性评价
作者:
中图分类号:

P642.2,X43

基金项目:

2023年山东省本科教学改革研究重大项目“面向智慧城市的测绘类专业人才培养探索与实践”(Z2023208)


Assessing Geological Disaster Susceptibility in Taishan Area by Coupling Certainty Factor Model with Optimized Random Forest Model
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 针对泰山地区地质灾害频发这一现状,研究并构建地质灾害易发性评价模型,为该地区的地质灾害预防与治理工作提供参考。[方法] 以泰山地区为研究区,采用确定性系数模型与粒子群算法优化RF模型耦合的方法,完成对研究区的地质灾害易发性评价。该方法是利用确定性系数(CF)模型计算影响因子对地质灾害的敏感值,作为模型训练的属性值,引入粒子群算法对随机森林(RF)模型进行参数寻优,提高模型对地质灾害的预测精度和准确度。选取坡度、距道路距离、土地利用类型、植被指数等11个影响因子,采用皮尔逊相关系数法和多重共线性检查进行影响因子筛选择优,绘制ROC和PR曲线对训练模型进行精度评价。[结果] CF-PSO-RF耦合模型相比单一SVR、单一RF和CF-PSO-SVR模型的极高易发区面积比例分别提高10.55%,10.04%和5.08%,AUC值分别提高14%,5.1%和1.7%,AP精度分别提高了11.7%,4.4%,1.2%。预测结果显示,泰山地区的极高、高易发区主要位于泰山景区、岱岳区北部等地形起伏和坡度较大的区域,面积所占比例为28.05%,涵盖了60.1%的地质灾害点;相反,低、极低易发区主要分布在建设用地、农田等地势平坦区域,面积比例为59.26%。[结论] 将确定性系数模型与优化后RF模型耦合,相比单一模型精度有进一步的提升,又优于CF-PSO-SVR模型精度,评价结果符合实际情况。

    Abstract:

    [Objective] The present study was performed to develop a geological disaster susceptibility evaluation model for predicting frequent geological disasters in the Taishan area. The aim was to use the results of this susceptibility evaluation as reference for preventing and managing geological disasters in this area. [Methods] Our analyses focused on the Taishan area, employing a method in which the certainty factor (CF) model was coupled with a random forest (RF) model optimized using the particle swarm optimization (PSO) algorithm to evaluate the geological disaster susceptibility in the research area. This method uses the CF model to calculate the sensitivity values of the factors influencing geological disasters, which are then used as attribute values for model training. The PSO algorithm was introduced to optimize the parameters of the RF model, thereby improving the accuracy and precision of the model in predicting geological disasters. Eleven influencing factors, including slope, distance to roads, land-use type, and vegetation index, were selected. The Pearson correlation coefficient method and a multicollinearity check were used to screen and optimize these influencing factors. The precision of the trained model was evaluated using ROC and PR curves. [Results] Compared with those of the single SVR, single RF, and CF-PSO-SVR models, the CF-PSO-RF coupled model significantly improved the proportion of extremely-high-susceptibility areas by 10.55%, 10.04%, and 5.08%, respectively, increased the AUC values by 14%, 5.1%, and 1.7%, respectively, and enhanced the average precision (AP)accuracy by 11.7%, 4.4%, and 1.2%, respectively. The prediction results revealed that the regions with high and extremely high susceptibility to geological disasters were mainly located in the Taishan scenic area, Northern Daiyue District, and other regions with significant topographic relief and steep slopes, covering 28.05% of the area and encompassing 60.1% of the geological disaster points. In contrast, regions with low and very low susceptibility were primarily distributed in flat areas, such as construction and farm lands, accounting for 59.26% of the total area. [Conclusion] The accuracy of the CF-PSO-RF coupled model for disaster susceptibility evaluation was notably higher than that of the single models; further, its precision was superior to that of the CF-PSO-SVR model. These evaluation results are consistent with actual conditions.

    参考文献
    [1] 程凤,焦玉国,周超,等.泰安市崩塌、滑坡、泥石流发育特征及防治对策浅析[J].山东国土资源,2022,38(2):47-51. Cheng Feng, Jiao Yuguo, Zhou Chao, et al. Analysis on development characteristics and prevention countermeasures of collapse landslide debris flow in Tai’an City [J]. Shandong Land and Resources, 2022,38(2):47-51.
    [2] 泰安市自然资源和规划局.山东省泰安市地质灾害防治规划(2021-2025)[EB/OL].(2022-10-26). https://zrzyj.taian.gov.cn/art/2022/10/26/art_165860_10307956.html. Tai’an Natural Resources and Planning Bureau. Geological Disaster Prevention and Control Plan of Tai’an City, Shandong Province(2021-2025)[EB/OL].(2022-10-26). https://zrzyj.taian.gov.cn/art/2022/10/26/art_165860_10307956.html.
    [3] 兰盈盈,郭昶成,朱云福.地质灾害易发性评价方法综述[J].地质与资源,2024,33(1):65-73. Lan Yingying, Guo Changcheng, Zhu Yunfu. Review on the evaluation methods of geological hazard susceptibility [J]. Geology and Resources, 2024,33(1):65-73.
    [4] 王哲,易发成.基于层次分析法的绵阳市地质灾害易发性评价[J].自然灾害学报,2009,18(1):14-23. Wang Zhe, Yi Facheng. AHP-based evaluation of occurrance easiness of geological disasters in Mianyang City [J]. Journal of Natural Disasters, 2009,18(1):14-23.
    [5] 牛全福.基于GIS的地质灾害风险评估方法研究: 以“4·14”玉树地震为例[D].甘肃兰州:兰州大学,2011. Niu Quanfu. Study on the method of geological disaster risk assessmentbased on GISA case study in “4·14” Yushu earthquake[D]. Lanzhou, Gansu: Lanzhou University,2011.
    [6] Ado M, Amitab K, Maji A K, et al. Landslide susceptibility mapping using machine learning: A literature survey [J]. Remote Sensing, 2022,14(13):3029.
    [7] 毛正君,张瑾鸽,仲佳鑫,等.基于确定性系数法的梯田型黄土滑坡隐患影响因素分析[J].水土保持通报,2023,43(2):183-192. Mao Zhengjun, Zhang Jinge, Zhong Jiaxin, et al. Sensitivity analysis on factors influencing loess terrace landslide potential using certainty factor method [J]. Bulletin of Soil and Water Conservation, 2023,43(2):183-192.
    [8] 田春山,刘希林,汪佳.基于CF和Logistic回归模型的广东省地质灾害易发性评价[J].水文地质工程地质,2016,43(6):154-161. Tian Chunshan, Liu Xilin, Wang Jia. Geohazard susceptibility assessment based on CF model and Logistic Regression models in Guangdong [J]. Hydrogeology & Engineering Geology, 2016,43(6):154-161.
    [9] 仉文岗,何昱苇,王鲁琦,等.基于水系分区的滑坡易发性机器学习分析方法: 以重庆市奉节县为例[J].地球科学,2023,48(5):2024-2038. Zhang Wengang, He Yuwei, Wang Luqi, et al. Machine learning solution for landslide susceptibility based on hydrographic division: Case study of Fengjie County in Chongqing [J]. Earth Science, 2023,48(5):2024-2038.
    [10] Yao X, Tham L G, Dai F C. Landslide susceptibility mapping based on Support Vector Machine: A case study on natural slopes of Hong Kong, China [J]. Geomorphology, 2008,101(4):572-582.
    [11] 杜鹏,陈宁生,伍康林,等.基于随机森林模型的藏东南地区滑坡易发性评价及主控因素分析[J].成都理工大学学报(自然科学版),2024,51(2):328-344. Du Peng, Chen Ningsheng, Wu Kanglin, et al. Evaluation of landslide susceptibility in southeast Tibet based on a random forest model [J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2024,51(2):328-344.
    [12] 胡涛,樊鑫,王硕,等.基于逻辑回归模型和3S技术的思南县滑坡易发性评价[J].地质科技通报,2020,39(2):113-121. Hu Tao, Fan Xin, Wang Shuo, et al. Landslide susceptibility evaluation of Sinan County using logistics regression model and 3S technology [J]. Bulletin of Geological Science and Technology, 2020,39(2):113-121.
    [13] Li Jian. Study on Mine Geological Hazard Assessment Model Based on ANN [R]. 20102nd International Conference on Information Engineering and Computer Science. IEEE, 2010.
    [14] Tan Qulin, Huang Yong, Hu Jun, et al. Application of artificial neural network model based on GIS in geological hazard zoning [J]. Neural Computing and Applications, 2021,33(2):591-602.
    [15] 郑迎凯,陈建国,王成彬,等.确定性系数与随机森林模型在云南芒市滑坡易发性评价中的应用[J].地质科技通报,2020,39(6):131-144. Zheng Yingkai, Chen Jianguo, Wang Chengbin, et al. Application of certainty factor and random forests model in landslide susceptibility evaluation in Mangshi City, Yunnan Province [J]. Bulletin of Geological Science and Technology, 2020,39(6):131-144.
    [16] 周晓亭,黄发明,吴伟成,等.基于耦合信息量法选择负样本的区域滑坡易发性预测[J].工程科学与技术,2022,54(3):25-35. Zhou Xiaoting, Huang Faming, Wu Weicheng, et al. Regional landslide susceptibility prediction based on negative sample selected by coupling information value method [J]. Advanced Engineering Sciences, 2022,54(3):25-35.
    [17] 任瑞斌,李丽敏,王莲霞,等.基于PSO-LSSVM的广西花岗岩分布区滑坡易发性评价[J].国外电子测量技术,2023,42(5):157-162. Ren Ruibin, Li Limin, Wang Lianxia, et al. Evaluation of landslide hazard susceptibility in granite distribution area of Guangxi based on PSO-LSSVM [J]. Foreign Electronic Measurement Technology, 2023,42(5):157-162.
    [18] 郭天颂.基于粒子群优化支持向量机的滑坡易发性评价与滑坡位移预测[D].陕西西安:长安大学,2019. Guo Tiansong. Landslide susceptibility evaluation and landslide displacement prediction based on particle swarm optimization: Based support vector machine [D]. Xi’an, Shaanxi: Chang’an University, 2019.
    [19] 陈芯宇,师芸,赵侃,等.基于CF融入SSA优化SVM和RF模型的滑坡易发性评价[J].西安理工大学学报,2024,40(1):121-131. Chen Xinyu, Shi Yun, Zhao Kan, et al. Landslide susceptibility evaluation based on CF integrated with SSA to optimize SVM and RF models [J]. Journal of Xi’an University of Technology, 2024,40(1):121-131.
    [20] Shortliffe E H, Buchanan B G. A model of inexact reasoning in medicine [J]. Mathematical Biosciences, 1975,23(3/4):351-379.
    [21] Belgiu M, Drǎgut L. Random forest in remote sensing: A review of applications and future directions [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016,114:24-31.
    [22] 方匡南,吴见彬,朱建平,等.随机森林方法研究综述[J].统计与信息论坛,2011,26(3):32-38. Fang Kuangnan, Wu Jianbin, Zhu Jianping, et al. A review of technologies on random forests [J]. Statistics & Information Forum, 2011,26(3):32-38.
    [23] 武雪玲,任福,牛瑞卿,等.斜坡单元支持下的滑坡易发性评价支持向量机模型[J].武汉大学学报(信息科学版),2013,38(12):1499-1503. Wu Xueling, Ren Fu, Niu Ruiqing, et al. Landslide spatial prediction based on slope units and support vector machines [J]. Geomatics and Information Science of Wuhan University, 2013,38(12):1499-1503.
    [24] Clerc M, Kennedy J. The particle swarm - explosion, stability, and convergence in a multidimensional complex space [J]. IEEE Transactions on Evolutionary Computation, 2002,6(1):58-73.
    [25] 郭天颂,张菊清,韩煜,等.基于粒子群优化支持向量机的延长县滑坡易发性评价[J].地质科技情报,2019,38(3):236-243. Guo Tiansong, Zhang Juqing, Han Yu, et al. Evaluation of landslide susceptibility in Yanchang County based on particle swarm optimization-based support vector machine [J]. Geological Science and Technology Information, 2019,38(3):236-243.
    [26] 杨光,徐佩华,曹琛,等.基于确定性系数组合模型的区域滑坡敏感性评价[J].工程地质学报,2019,27(5):1153-1163. Yang Guang, Xu Peihua, Cao Chen, et al. Assessment of regional landslide susceptibility based on combined model of certainty factor method [J]. Journal of Engineering Geology, 2019,27(5):1153-1163.
    [27] 栗泽桐,王涛,周杨,等.基于信息量、逻辑回归及其耦合模型的滑坡易发性评估研究: 以青海沙塘川流域为例[J].现代地质,2019,33(1):235-245. Li Zetong, Wang Tao, Zhou Yang, et al. Landslide susceptibility assessment based on information value model, logistic regression model and their integrated model: A case in Shatang River Basin, Qinghai Province [J]. Geoscience, 2019,33(1):235-245.
    [28] 黄发明,陈彬,毛达雄,等.基于自筛选深度学习的滑坡易发性预测建模及其可解释性[J].地球科学,2023,48(5):1696-1710. Huang Faming, Chen Bin, Mao Daxiong, et al. Landslide susceptibility prediction modeling and interpretability based on self-screening deep learning model [J]. Earth Science, 2023,48(5):1696-1710.
    [29] Chen Wei, Chen Yunzhi, Tsangaratos P, et al. Combining evolutionary algorithms and machine learning models in landslide susceptibility assessments [J]. Remote Sensing, 2020,12(23):3854.
    [30] Lee S T, Yu T T, Peng W F, et al. Incorporating the effects of topographic amplification in the analysis of earthquake-induced landslide hazards using logistic regression [J]. Natural Hazards and Earth System Sciences, 2010,10(12):2475-2488.
    [31] 王丽霞,喜文飞,史正涛,等.深度学习滑坡识别算法中样本不平衡问题的研究[J].测绘通报,2024(5):12-18. Wang Lixia, Xi Wenfei, Shi Zhengtao, et al. Study on sample unbalance in landslide recognition algorithm based on depth learning [J]. Bulletin of Surveying and Mapping, 2024(5):12-18.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

咸利民,季民,刘法军,李强.基于CF与优化RF模型耦合的泰山地区地质灾害易发性评价[J].水土保持通报,2024,43(5):134-143

复制
分享
文章指标
  • 点击次数:46
  • 下载次数: 125
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-06-07
  • 最后修改日期:2024-07-11
  • 在线发布日期: 2024-11-02