东太湖不同植被类型湿地CO2产生潜力对温度变化的响应
作者:
中图分类号:

S154.4

基金项目:

国家自然科学基金项目“基于大数据的城市道路绿化景观再设计的理论与方法研究:以南京为例”(31770752);江苏省高校自然科学资助项目“珍贵水生花卉香水莲花花色形成机理与应用研究”(20KJB220006);江苏省高校哲学社会科学研究项目(2023SJYB0781);江苏省自然科学基金项目(BK20240218)


Response of CO2 Production Potential of Wetland with Different Vegetation Types in East Taihu Lake to Temperature Change
Author:
  • Yang Lingling

    Yang Lingling

    College of Environment and Ecologyg, Jiangsu Open University, Nanjing, Jiangsu 210036, China;Ecological Environmental Protection, Urban Rural Water Environment Governance and Low-carbon Development Engineering Technology Center of Jiangsu Province, Nanjing, Jiangsu 210036, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • Zhou Qi

    Zhou Qi

    College of Environment and Ecologyg, Jiangsu Open University, Nanjing, Jiangsu 210036, China;College of Landscape Architecture, Nanjing Forestry University, Nanjing, Jiangsu 210037, China;Ecological Environmental Protection, Urban Rural Water Environment Governance and Low-carbon Development Engineering Technology Center of Jiangsu Province, Nanjing, Jiangsu 210036, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [33]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 探索不同植被类型湿地土壤CO2产生潜力对温度变化的响应规律,为精确估算CO2产生和温室气体排放提供依据。[方法] 针对3种不同植被类型湿地土壤(荷花、芦苇、开放水面),进行120 d的室内模拟培养试验,分别设置15,25,35 ℃处理,观察不同植被类型湿地土壤产CO2潜力的差异及其对温度变化的响应。[结果] 东太湖不同植被类型湿地土壤CO2产生速率在35 ℃培养下最快。35 ℃培养条件下芦苇、开放水面CO2产生速率随DOC增加而增加,其余均呈负相关关系。荷花、芦苇土壤最大产CO2潜力表现为35 ℃>15 ℃>25 ℃,开放水面表现为:15 ℃>25 ℃>35 ℃。荷花、芦苇湿地产CO2潜力与培养温度呈正相关,开放水面呈显著负相关关系。比较温度敏感系数Q10值发现,只有荷花土壤的升温Q10值大于降温Q10值。[结论] 高温能加快不同植被类型湿地土壤CO2产生速率、加剧DOC变化。比较同温度、不同植被土壤产CO2潜力发现,芦苇、开放水面对降温更敏感。湿地植物及其土壤对温室气体的产生受外界温度影响较大,在未来城市水生态管理中应予以更多的关注。

    Abstract:

    [Objective] Soil CO2 production potential of different vegetation types in response to temperature change was analyzed in order to provide the basis for accurate estimation of CO2 production and greenhouse gas emissions. [Methods] A simulated culture experiment was conducted for 120 days for three different types of wetland soil (Nelumbo nucifera, Phragmites australis and open water), and the treatment was set at 15, 25, and 35 ℃ to observe the difference in the CO2 production potential of the wetland soil of different vegetation types and evaluate their response to temperature change. [Results] The fastest soil CO2 production rate among the different vegetation types in East Taihu Lake was recorded in the 35 ℃ culture treatment. Under the culture temperature of 35 ℃, the CO2 production rate of P. australis and open water surface increased with an increase in dissolved organic carbon (DOC) but that of the rest were negatively correlated. The maximum CO2 production potential of N. nucifera and P. australis soil was in the order as follows: 35 ℃ > 15 ℃ > 25 ℃ and that of open water surface was 15 ℃ > 25 ℃ > 35 ℃. The CO2 production potential of N. nucifera and P. australis wetlands was positively correlated with culture temperature, whereas that of the open water surface was significantly negatively correlated. Comparising all of the temperature sensitivity coefficient Q10 values, it was found that only N. nucifera soil temperature rise Q10> temperature drop Q10. [Conclusion] High temperature can accelerate CO2 production rate and increase DOC change in different vegetation types. Regarding the CO2 production potential of soil with the same temperature and different vegetation, it was found that P. australis and open water surface were more sensitive to cooling. The greenhouse gas production of wetland plants and the soil was greatly affected by external temperature; therefore, more attention should be paid to future urban water ecological management.

    参考文献
    [1] 梁媚聪,秦圆圆,樊星,等.IPCC第六次评估报告第三工作组报告主要结论解读及对策建议[J].环境保护,2022,50(13):72-76. Liang Meicong, Qin Yuanyuan, Fan Xing, et al. Interpretation of the main conclusions and suggestions of IPCC AR6 working group Ⅲ report [J]. Environmental Protection, 2022,50(13):72-76.
    [2] Raymond P A, Hartmann J, Lauerwald R, et al. Global carbon dioxide emissions from inland waters [J]. Nature, 2013,503(7476):355-359.
    [3] Song Kaishan, Wen Zhidan, Xu Yijun, et al. Dissolved carbon in a large variety of lakes across five limnetic regions in China [J]. Journal of Hydrology, 2018,563:143-154.
    [4] Catalán N, Marcé R, Kothawala D N, et al. Organic carbon decomposition rates controlled by water retention time across inland waters [J]. Nature Geoscience, 2016,9:501-504.
    [5] 梁佳辉,田琳琳,周钟昱,等.太湖流域上游南苕溪水系夏秋季水体溶存二氧化碳和甲烷浓度特征及影响因素[J].环境科学,2021,42(6):2826-2838. Liang Jiahui, Tian Linlin, Zhou Zhongyu, et al. Characteristics and drivers of dissolved carbon dioxide and methane concentrations in the nantiaoxi river system in the upper reaches of the Taihu Lake basin during summer-autumn [J]. Environmental Science, 2021,42(6):2826-2838.
    [6] Song Changchun, Sun Li, Huang Yao, et al. Carbon exchange in a freshwater marsh in the Sanjiang Plain, Northeastern China [J]. Agricultural and Forest Meteorology, 2011,151(8):1131-1138.
    [7] Zhu Renbin, Liu Yashu, Xu Hua, et al. Carbon dioxide and methane fluxes in the littoral zones of two lakes, east Antarctica [J]. Atmospheric Environment, 2010,44(3):304-311.
    [8] Zhang Guangbin, Ji Yang, Ma Jing, et al. Intermittent irrigation changes production, oxidation, and emission of CH4 in paddy fields determined with stable carbon isotope technique [J]. Soil Biology and Biochemistry, 2012,52:108-116.
    [9] Liu Pengfei, Klose M, Conrad R. Temperature effects on structure and function of the methanogenic microbial communities in two paddy soils and one desert soil [J]. Soil Biology and Biochemistry, 2018,124:236-244.
    [10] 鲍士旦.土壤农化分析[M].3版.北京:中国农业出版社,2000. Bao Shidan. Soil Agrochemical Analysis (3rd Edition) [M]. Beijing: China Agriculture Press, 2000.
    [11] 刘德燕,丁维新.天然湿地土壤产甲烷菌及其影响因子研究进展[J].地理科学,2011,31(2):136-142. Liu Deyan, Ding Weixin. Progress on spatial variation of methanogens and their influencing factors in natural wetlands [J]. Scientia Geographica Sinica, 2011,31(2):136-142.
    [12] 王晓锋,袁兴中,陈槐,等.河流CO2与CH4排放研究进展[J].环境科学,2017,38(12):5352-5366. Wang Xiaofeng, Yuan Xingzhong, Chen Huai, et al. Review of CO2 and CH4 emissions from rivers [J]. Environmental Science, 2017,38(12):5352-5366.
    [13] Wassmann R, Neue H U, Bueno C, et al. Methane production capacities of different rice soils derived from inherent and exogenous substrates [J]. Plant and Soil, 1998,203(2):227-237.
    [14] Yang Yang, Li Ting, Pokharel P, et al. Global effects on soil respiration and its temperature sensitivity depend on nitrogen addition rate [J]. Soil Biology and Biochemistry, 2022,174:108814.
    [15] Inglett K S, Inglett P W, Reddy K R, et al. Temperature sensitivity of greenhouse gas production in wetland soils of different vegetation [J]. Biogeochemistry, 2012,108(1):77-90.
    [16] 刘胜,陈宇炜.退水期鄱阳湖薹草(Carex cinerascens)和藜蒿(Artemisia selengensis)洲滩湿地CO2通量变化及其影响因子[J].湖泊科学,2017,29(6):1412-1420. Liu Sheng, Chen Yuwei. Variations and impact factors of CO2 fluxes of Carex cinerascens-dominated and Artemisia selengensis-dominated wetland in Lake Poyang during drawdown periods [J]. Journal of Lake Sciences, 2017,29(6):1412-1420.
    [17] 王晓锋,龙雨行,余乐乐,等.不同水生植物对景观水体CO2与CH4排放通量的影响[J].生态学报,2023,43(9):3592-3606. Wang Xiaofeng, Long Yuhang, Yu Lele, et al. Effects of aquatic plants on the spatio-temporal variations of CO2 and CH4 fluxes in urban landscape waters [J]. Acta Ecologica Sinica, 2023,43(9):3592-3606.
    [18] 龚小杰,袁兴中,刘婷婷,等.水生植物对淡水生态系统温室气体排放的影响研究进展[J].地球与环境,2020,48(4):496-509. Gong Xiaojie, Yuan Xingzhong, Liu Tingting, et al. Review on effects of aquatic plants on the greenhouse gas emission from freshwater ecosystems [J]. Earth and Environment, 2020,48(4):496-509.
    [19] Bhullar G S, Edwards P J, Olde Venterink H. Variation in the plant-mediated methane transport and its importance for methane emission from intact wetland peat mesocosms [J]. Journal of Plant Ecology, 2013,6(4):298-304.
    [20] 邓焕广,张智博,刘涛,等.城市湖泊不同水生植被区水体温室气体溶存浓度及其影响因素[J].湖泊科学,2019,31(4):1055-1063. Deng Huanguang, Zhang Zhibo, Liu Tao, et al. Dissolved greenhouse gas concentrations and the influencing factors in different vegetation zones of an urban lake [J]. Journal of Lake Sciences, 2019,31(4):1055-1063.
    [21] 王金龙,李艳红,李发东.博斯腾湖人工和天然芦苇湿地土壤CO2、CH4和N2O排放通量[J].生态学报,2018,38(2):668-677. Wang Jinlong, Li Yanhong, Li Fadong. Emission fluxes of CO2,CH4,and N2O from artificial and natural reed wetlands in Bosten Lake, China [J]. Acta Ecologica Sinica, 2018,38(2):668-677.
    [22] 牛翠云,王树涛,郭艳杰,等.白洋淀芦苇型水陆交错带湿地CH4和CO2的排放特征[J].江苏农业科学,2018,46(15):209-213. Niu Cuiyun, Wang Shutao, Guo Yanjie, et al. Emission characteristics of CH4 and CO2 from Phragmites australis-dominated land/inland water ecotones in Baiyangdian Wetland [J]. Jiangsu Agricultural Sciences, 2018,46(15):209-213.
    [23] 薛海清,岳娅,冯茜,等.大气温度和CO2增加对黑土有机碳稳定性的影响[J].水土保持通报,2023,43(3):366-373. Xue Haiqing, Yue Ya, Feng Qian, et al. Effects of elevated temperature and CO2 enrichment on stability of soil organic carbon storage in mollisols [J]. Bulletin of Soil and Water Conservation, 2023,43(3):366-373.
    [24] 曹晓霭,刘华民,张睿,等.春季解冻条件下乌梁素海湖滨带土壤温室气体排放室内模拟研究[J].湿地科学,2022,20(1):34-48. Cao Xiaoai, Liu Huamin, Zhang Rui, et al. Laboratory simulation of greenhouse gas emissions from soils in lakeshore of Ulansu Lake under spring thawing conditions [J]. Wetland Science, 2022,20(1):34-48.
    [25] 桑文秀,杨华蕾,唐剑武.不同土地利用类型土壤温室气体排放对温湿度的响应[J].华东漈昃?摦楦玥猨濪氶监敦摈?漬爲朰愲渱椨挴?挺愱爰戹漭渱′椰渮?牓畡湮潧映晗?孮?嵩???捙瑡慮??捈潵污潬来楩挬愠?卡楮湧椠捊慩???ふ?????????????㈠?oil greenhouse gas emissions to temperature and moisture across different land-use types [J]. Journal of East China Normal University (Natural Science), 2021(4):109-120.
    [26] 杨平,何清华,仝川.闽江口不同沼泽植被带土壤甲烷产生潜力的温度敏感性[J].中国环境科学,2015,35(3):879-888. Yang Ping, He Qinghua, Tong Chuan. Temperature sensitivity of soil methane production potential in different marsh vegetation zones in the Min River Estuary [J]. China Environmental Science, 2015,35(3):879-888.
    [27] Hu Han, Chen Ji, Zhou Feng, et al. Relative increases in CH4 and CO2 emissions from wetlands under global warming dependent on soil carbon substrates [J]. Nature Geoscience, 2024,17:26-31.
    [28] Chen Ji, Luo Yiqi, Sinsabaugh R L. Subsoil carbon loss[J].Nature Geoscience,2023,16(4):284-285.
    [29] 叶琳琳,孔繁翔,史小丽,等.富营养化湖泊溶解性有机碳生物可利用性研究进展[J].生态学报,2014,34(4):779-788. Ye Linlin, Kong Fanxiang, Shi Xiaoli, et al. The bioavailability of dissolved organic carbon in the eutrophic lakes [J]. Acta Ecologica Sinica, 2014,34(4):779-788.
    [30] 程锦萍,郭欢,刘宇昂,等.洪泽湖底泥产甲烷速率及其对温度变化的响应[J].湿地科学,2023,21(3):439-448. Cheng Jinping, Guo Huan, Liu Yuang, et al. Methane production rate of the sediment in Hongze Lake and its response to temperature change [J]. Wetland Science, 2023,21(3):439-448.
    [31] 王旭,李斐,赵世翔.冻融交替对土壤CO2排放影响的研究进展[J].土壤通报,2022,53(3):728-737. Wang Xu, Li Fei, Zhao Shixiang. Freeze-thaw regime effects on soil CO2 emission: A review [J]. Chinese Journal of Soil Science, 2022,53(3):728-737.
    [32] 刘艺,许浩廉,毛羽丰,等.铜绿微囊藻衰亡过程中产甲烷动态及关键影响因子[J].土木与环境工程学报(中英文),2019,41(5):132-140. Liu Yi, Xu Haolian, Mao Yufeng, et al. Methane-producing dynamics and key influencing factors during the decay of Microcystis aeruginosa [J]. Journal of Civil and Environmental Engineering, 2019,41(5):132-140.
    [33] 胥超,林成芳,刘小飞,等.森林转换对地表径流可溶性有机碳输出浓度和通量的影响[J].生态学报,2017,37(1):84-92. Xu Chao, Lin Chengfang, Liu Xiaofei, et al. Effects of forest conversion on concentrations and fluxes
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨玲玲,周琦.东太湖不同植被类型湿地CO2产生潜力对温度变化的响应[J].水土保持通报,2024,43(5):262-270

复制
分享
文章指标
  • 点击次数:34
  • 下载次数: 122
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-04-15
  • 最后修改日期:2024-06-06
  • 在线发布日期: 2024-11-02