青藏高原隧道建设对土壤有机碳含量及酶活性的影响
作者:
中图分类号:

S714

基金项目:

成都理工大学“珠峰科学研究计划”(80000-2022ZF11410);四川省林草科技创新团队“数字林草监测与林草碳汇创新研究与示范”(CXTD2023003)


Effects of Tunnel Construction on Soil Organic Carbon Content and Enzyme Activity in Qinghai-Xizang Plateau
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [36]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 开展青藏高原隧道建设对土壤有机碳含量及酶活性的影响研究,为阐明隧道建设对生态环境的影响提供理论参考。[方法] 以青藏高原某隧道工程建设为依托,在隧道建设影响区与对照区设置半径为10 m的固定监测样地,研究隧道建设对表层土壤有机碳含量及酶活性的短期影响。[结果] 隧道开建1 a后隧道影响区土壤有机碳含量、易氧化有机碳含量和可溶性有机碳含量分别为76.84,25.90和3.15 g/kg,对照区分别为52.91,15.60和3.18 g/kg;隧道开建3 a后隧道影响区土壤有机碳含量、易氧化有机碳含量和可溶性有机碳含量分别为92.63,28.65和3.41 g/kg,对照区分别为94.81,23.11和3.34 g/kg;差异均不显著(p>0.05),表明短期内隧道建设对土壤有机碳及组分含量无影响。隧道影响区的土壤β-葡萄糖苷酶和过氧化氢酶活性在开建1 a后和3 a后与对照区差异均不显著(p>0.05),隧道影响区的多酚氧化酶活性在开建1 a后有显著降低(p=0.02),但在开建3 a后,多酚氧化酶活性在隧道影响区和对照区之间没有显著差异(p>0.05),表明隧道建设对土壤酶活性无显著影响。[结论] 隧道工程建设对土壤有机碳及其组分含量和酶活性短期内无显著影响,主要由于隧道建设过程对土壤有机碳输入与输出等无明显影响所致,长期影响有待进一步研究。

    Abstract:

    [Objective] The impact of tunnel construction on soil organic carbon content and enzyme activity in the Qinghai-Xizang Plateau was researched in order to provide a theoretical reference for elucidating the impact of tunnel construction on the ecological environment. [Methods] Based on the construction of a tunnel project on the Qinghai-Xizang Plateau, fixed monitoring plots with a radius of 10 m were set up in the impact area and control area of tunnel construction to study the short-term effects of tunnel construction on surface soil organic carbon content and enzyme activity. [Results] After one year of tunnel construction, the soil organic carbon content, easily oxidizable organic carbon content, and soluble organic carbon content in the tunnel-impact area were determined to be 76.84, 25.90, and 3.15 g/kg, respectively, while that of the control area was 52.91, 15.60, and 3.18 g/kg, respectively, whereas that after three years of tunnel construction was 92.63, 28.65, and 3.41 g/kg in the impact area respectively, and 94.81, 23.11, and 3.34 g/kg in the control area, respectively. The differences were not significant (p>0.05), indicating that tunnel construction has no impact on soil organic carbon and component content in the short term. The activities of β-glucosidase and catalase in the soil of the tunnel-affected area demonstrated no significant differences compared to the control area after one year and three years of construction (p>0.05), while the activity of polyphenol oxidase in the tunnel-impact area decreased significantly after one year of construction (p=0.02). However, after three years of construction, there was no significant difference in polyphenol oxidase activity between the tunnel-impact area and the control area (p>0.05), indicating that tunnel construction had no significant effect on soil enzyme activity. [Conclusion] Tunnel construction has no significant impact on soil organic carbon and its component content, as well as enzyme activity in the short term. This is primarily because the tunnel construction process has no significant impact on soil microbial processes, soil nutrients, and input and output of soil organic carbon, while the long-term impact needs further research.

    参考文献
    [1] 曾晓燕.岩溶隧道涌水对生态环境的影响[D].四川成都:西南交通大学,2006. Zeng Xiaoyan. Impact of karst tunnel water inflow on ecological environment [D]. Chengdu, Sichuan: Southwest Jiaotong University, 2006.
    [2] 陈畅,贾亚男,贺秋芳,等.典型岩溶槽谷区氨氧化微生物丰度对隧道建设的响应: 以中梁山为例[J].微生物学报,2022,62(1):119-130. Chen Chang, Jia Yanan, He Qiufang, et al. Responses of the ammonia-oxidizing microorganisms’ abundance to tunnel evacuation in Karst trough volley: A case study in Zhongliang Mountain, Chongqing, China [J]. Acta Microbiologica Sinica, 2022,62(1):119-130.
    [3] 彭学义.重庆市中梁山岩溶槽谷区隧道建设对土壤质量的影响[D].重庆:西南大学,2019. Peng Xueyi. The impact of tunnel construction on soil quality in the karst trough valley area of Zhongliangshan, Chongqing [D]. Chongqing: Southwest University, 2019.
    [4] 刘九缠.隧道建设对岩溶槽谷区植物水分利用策略的影响[D].重庆:西南大学,2019. Liu Jiulao. The impact of tunnel construction on plant water use strategies in karst trough valley areas [D]. Chongqing: Southwest University, 2019.
    [5] Zhu Lianqi, Zhu Xiaoli, Li Xiuxia. Progress in soil organic carbon research [J]. Journal of Henan University Natural Science, 2006,36(3):72-75.
    [6] 曹彦,游巍斌,王方怡,等.森林生态系统粗死木质残体碳储量研究进展[J].生态学报,2021,41(20):7913-7927. Cao Yan, You Weibin, Wang Fangyi, et al. Research progress on carbon storage of coarse woody debris in forest ecosystems [J]. Acta Ecologica Sinica, 2021,41(20):7913-7927.
    [7] 王海燕,雷相东,张会儒,等.近天然落叶松云冷杉林土壤有机碳研究[J].北京林业大学学报,2009,31(3):11-16. Wang Haiyan, Lei Xiangdong, Zhang Huiru, et al. Soil organic carbon in semi-natural mixed larch-spruce-fir stands of Northeastern China [J]. Journal of Beijing Forestry University, 2009,31(3):11-16.
    [8] Haynes R J. Labile Organic Matter Fractions as Central Components of the Quality of Agricultural Soils: An Overview [M]. Advances in Agronomy. Amsterdam: Elsevier, 2005:221-268.
    [9] 白义鑫,盛茂银,胡琪娟,等.西南喀斯特石漠化环境下土地利用变化对土壤有机碳及其组分的影响[J].应用生态学报,2020,31(5):1607-1616. Bai Yixin, Sheng Maoyin, Hu Qijuan, et al. Effects of land use change on soil organic carbon and its components in karst rocky desertification of Southwest China [J]. Chinese Journal of Applied Ecology, 2020,31(5):1607-1616.
    [10] 吴超,蒋勇军,沈立成,等.喀斯特槽谷典型植物水分利用效率对隧道建设的响应[J].生态学报,2020,40(12):4032-4040. Wu Chao, Jiang Yongjun, Shen Licheng, et al. Response of water use efficiency of typical plants to tunnel construction in karst trough valley [J]. Acta Ecologica Sinica, 2020,40(12):4032-4040.
    [11] 赵晗,王海燕,胡兴国,等.基于结构方程的云冷杉阔叶混交林土壤有机碳影响因子[J].生态学杂志,2024,43(1):264-272. Zhao Han, Wang Haiyan, Hu Xingguo, et al. Influencing factors of soil organic carbon in mixed spruce-fir-broadleaved forest based on structural equation [J]. Chinese Journal of Ecology, 2024,43(1):264-272.
    [12] 关松荫.土壤酶及其研究法[M].北京:农业出版社,1986. Guan Songyin. Soil Enzymes and Their Research Methods [M]. Beijing: Agricultural Press, 1986.
    [13] 万忠梅,宋长春.土壤酶活性对生态环境的响应研究进展[J].土壤通报,2009,40(4):951-956. Wan Zhongmei, Song Changchun. Advance on response of soil enzyme activity to ecological environment [J]. Chinese Journal of Soil Science, 2009,40(4):951-956.
    [14] 任晓华.山西省高速公路路域植被建植技术研究[J].低碳世界,2021,11(10):152-153. Ren Xiaohua. Study on vegetation planting technology in expressway road area [J]. Low Carbon World, 2021,11(10):152-153.
    [15] 侯敏,胡艳平,张静晓,等.高速公路建设沿线植被覆盖度时空演化特征研究[J].交通节能与环保,2024,20(1):101-108. Hou Min, Hu Yanping, Zhang Jingxiao, et al. Study on temporal and spatial evolution characteristics of vegetation coverage along expressway construction [J]. Transport Energy Conservation & Environmental Protection, 2024,20(1):101-108.
    [16] Wang Bing, Liu Guo bin, Xue Sha, et al. Changes in soil physico-chemical and microbiological properties during natural succession on abandoned farmland in the Loess Plateau [J]. Environmental Earth Sciences, 2011,62(5):915-925.
    [17] Nannipieri P, Kandeler E, Ruggiero P. Enzyme Activities and Microbiological and Biochemcial Processes in Soil [M]. Enzymes in the Environment. Boca Raton: CRC Press, 2002.
    [18] Wang Bing, Xue Sha, Liu Guobin, et al. Changes in soil nutrient and enzyme activities under different vegetations in the Loess Plateau area, Northwest China [J]. Catena, 2012,92:186-195.
    [19] Zhang Xinyu, Dong Wenyi, Dai Xiaoqin, et al. Responses of absolute and specific soil enzyme activities to long term additions of organic and mineral fertilizer [J]. Science of the Total Environment,2015,536(1):59-67.
    [20] Raiesi F, Beheshti A. Soil specific enzyme activity shows more clearly soil responses to paddy rice cultivation than absolute enzyme activity in primary forests of Northwest Iran [J]. Applied Soil Ecology, 2014,75:63-70.
    [21] 亓玉昆.守护好青藏高原的生灵草木、万水千山[N].人民日报,2023-05-25(18). Qi Yukun. Guarding the Life, Plants, and Mountains of the Qinghai Tibet Plateau [N]. People’s Daily, 2023-05-25(18).
    [22] 张宪洲,杨永平,朴世龙,等.青藏高原生态变化[J].科学通报,2015,60(32):3048-3056. Zhang Xianzhou, Yang Yongping, Piao Shilong, et al. Ecological change on the Tibetan Plateau [J]. Chinese Science Bulletin, 2015,60(32):3048-3056.
    [23] 朱志强.色季拉山隧道工程岩体渗透特征及涌水预测研究[D].四川成都:成都理工大学,2020. Zhu Zhiqiang. Study on rock mass permeability characteristics and water inflow prediction of Sejila Mountain Tunnel Project [D]. Chengdu, Sichuan: Chengdu University of Technology, 2020.
    [24] 中国林科院.LYT1237-1999森林土壤有机质的测定及碳氮化的计算[S].北京:国家林业局,2018. Chinese Academy of Forestry. LY/T1237-1999 Determination of Organic Matter in Forest Soil and Calculation of Carbon Nitrogen Ratio [S]. Beijing: State Forestry Administration, 2018.
    [25] Blair G J, Lefroy R, Lisle L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems [J]. Australian Journal of Agricultural Research, 1995,46(7):1459.
    [26] 丁咸庆,柏菁,项文化,等.不同浸提剂处理森林土壤溶解性有机碳含量比较[J].土壤,2020,52(3):518-524. Ding Xianqing, Bai Jing, Xiang Wenhua, et al. Comparison of dissolved organic carbon contents in forest soils extracted by different agents [J]. Soils, 2020,52(3):518-524.
    [27] 苏卓侠,苏冰倩,上官周平.植物凋落物分解对土壤有机碳稳定性影响的研究进展[J].水土保持研究,2022,29(2):406-413. Su Zhuoxia, Su Bingqian, Shangguan Zhouping. Advances in effects of plant litter decomposition on the stability of soil organic carbon [J]. Research of Soil and Water Conservation, 2022,29(2):406-413.
    [28] 刘建,刘丹.岩溶隧道建设引起的地下水环境负效应研究: 以铜锣山隧道为例[J].水土保持研究,2009,16(3):268-271. Liu Jian, Liu Dan. Study on groundwater negative effects resulted by tunnel construction in karst areas: A case study of Tongluoshan tunnel [J]. Research of Soil and Water Conservation, 2009,16(3):268-271.
    [29] 康小兵,胡卸文.四川松潘某隧道建设对地下水动力环境影响预测模拟[J].南水北调与水利科技,2015,13(1):113-117. Kang Xiaobing, Hu Xiewen. Numerical simulation of impacts of mountain tunnel construction on groundwater environment [J]. South-to-North Water Transfers and Water Science & Technology, 2015,13(1):113-117.
    [30] Zhao Pei, Tang Xiangyu, Zhao Peng, et al. Temporal partitioning of water between plants and hillslope flow in a subtropical climate [J]. Catena, 2018,165:133-144.
    [31] 王冰,张鹏杰,张秋良.不同林龄兴安落叶松林土壤总有机碳与理化性质的关系[J].西北农林科技大学学报(自然科学版),2021,49(10):36-45. Wang Bing, Zhang Pengjie, Zhang Qiuliang. Relationship between soil total organic carbon and physicochemical properties in Larix gmelinii forests at different ages [J]. Journal of Northwest A & F University (Natural Science Edition), 2021,49(10):36-45.
    [32] 李志安,邹碧,丁永祯,等.森林凋落物分解重要影响因子及其研究进展[J].生态学杂志,2004,23(6):77-83. Li Zhian, Zou Bi, Ding Yongzhen, et al. Key factors of forest litter decomposition and research progress [J]. Chinese Journal of Ecology, 2004,23(6):77-83.
    [33] Wang Jianan, Jiang Yongjun, He Qiufang, et al. Response of soil microbial community in grassland to tunnel construction in the karst trough valley, Zhongliang Mountain, Chongqing [J]. Acta Ecologica Sinica, 2019,39(16): 6136-6145.
    [34] 刘芳,汪航飞,蒲春燕,等.不同施肥对葡萄苗根际微生物量、土壤酶活性和生理的影响[J].四川农业大学学报,2023,41(2):318-324. Liu Fang, Wang Hangfei, Pu Chunyan, et al. Effects of different fertilization on rhizosphere microbial biomass, soil enzyme activity and physiology of grape seedlings [J]. Journal of Sichuan Agricultural University, 2023,41(2):318-324.
    [35] 覃蒙尔,李臻,窦莉,等.喀斯特地区植物根系分泌物酶活性对根际土酶活性和养分的影响[J].广西植物,2024,44(3):465-476. Qin Menger, Li Zhen, Dou Li, et al. Effects of plant root exudates enzyme activities on rhizosphere soil enzyme activities and nutrients in karst areas [J]. Guihaia, 2024,44(3):465-476.
    [36] 郝建朝,吴沿友,连宾,等.土壤多酚氧化酶性质研究及意义[J].土壤通报,2006,37(3):470-474. Hao Jianchao, Wu Yanyou, Lian Bin, et al. Properties of polyphenol oxidase in soil and its significance [J]. Chinese Journal of Soil Science, 2006,37(3):470-474.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

何姝蕊,赵润英,王晓东,张平,裴向军,赖长鸿,宋放,唐晓鹿.青藏高原隧道建设对土壤有机碳含量及酶活性的影响[J].水土保持通报,2024,43(5):280-286,293

复制
分享
文章指标
  • 点击次数:46
  • 下载次数: 107
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-05-13
  • 最后修改日期:2023-07-10
  • 在线发布日期: 2024-11-02