城市公园及周边景观格局对冷岛效应影响——以福州市为例
作者:
作者单位:

1.福建农林大学风景园林与艺术学院;2.科廷大学设计与建筑环境学院,珀斯

中图分类号:

X22

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [36]
  • | | | |
  • 文章评论
    摘要:

    [目的]福州作为“火炉城市”,其热岛效应显著。分析福州城市公园及周边景观格局对冷岛效应的影响,量化不同冷岛效应类型公园降温效果及景观配置特征,对研究城市公园冷岛效应缓解城市高温有着重要意义。[方法]研究根据《福州市城市公园名录》筛选23个城市公园,基于Landsat8、GF-1等遥感数据采用辐射传输方程反演地表温度,分析公园规模、形状、公园及其周边景观组成、植被覆盖、建筑高度以及经济发展水平要素与冷岛效应的相关关系;拟合公园面积与累计冷岛效应梯度对数函数曲线,计算公园效率阈值;基于降温效果划分公园冷岛效应类型并分析各类型降温特点与公园配置。[结果]①福州市主城区热岛效应显著,公园降温效果明显。②公园冷岛效应与公园的规模、形状以及公园和周边景观组成要素相关性显著,与植被覆盖要素相关性较弱,与建筑高度、经济发展水平要素无显著相关性。③福州城市公园的降温效率阈值为0.22 hm2。④基于归一化公园平均温度和累计冷岛效应梯度将公园划分为强冷岛效应型、较强冷岛效应型以及弱冷岛效应型三类。不同类型公园有着不同的降温效果以及景观格局分别适合布置于郊区、市区以及用地局促的人流密集区。[结论]未来在公园规划布局中应充分考虑公园冷岛效应类型及其景观格局,合理布局公园规模和景观组成,以求最小公园规模最大限度缓解城市热岛效应。

    Abstract:

    [Objective] As a "furnace city", Fuzhou experiences a significant heat island effect. Analyzing the influence of urban parks and surrounding landscape patterns on the cold island effect, and quantifying the cooling impact and landscape configuration of parks with varying cold island effects, is essential for mitigating urban heat. [Method] Based on the list of urban parks in Fuzhou, 23 urban parks were selected, and the radiative transfer equation was used to invert the land surface temperature based on Landsat8 and GF-1 and other remote sensing data. The correlation between the scale, shape, internal and surrounding landscape components of the park, vegetation coverage, building height and economic development and the cold island effect was analyzed. The logarithmic function curve was fitted between park area and the cumulative gradient of cold island effect to calculate the cooling efficiency threshold. Based on the cooling effect, the types of cold island effect in parks were divided, and the cooling characteristics and park configuration of each type were analyzed. [Result] (1) The heat island effect in the main urban area of Fuzhou City was significant, and parks provided noticeable cooling. (2) The parks’ cold island effect was significantly correlated with its scale, shape, and internal and surrounding landscape components, but showed a weak correlation with the vegetation coverage and no significant correlation with building height or economic development. (3) The cooling efficiency threshold of Fuzhou city park was 0.22 hm2. (4) Based on the normalized average temperature and cumulative gradient of cold island effect, the parks are divided into strong, sub-strong and low cold island effect types, each with distinct cooling effects and landscape patterns suitable for suburban, urban and crowded areas with limited land. [Conclusion] Future park planning should consider the cold island effect type and landscape pattern, optimizing park scale and landscape composition to maximum cooling with minimal land use, thereby easing the urban heat island effect.

    参考文献
    [1] Liu X, Huang Y, Xu X, et al. High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015[J]. Nature Sustainability[2024-07-04]. DOI:10.1038/s41893-020-0521-x.
    [2] 联合国人居署. 2022世界城市状况报告[R]. 2022.
    [3] Wang J, Chen Y, Liao W, et al. Anthropogenic emissions and urbanization increase risk of compound hot extremes in cities[J]. Nature Climate Change, 2021, 11:1084 - 1089. DOI:10.1038/s41558-021-01196-2.
    [4] 王美雅, 徐涵秋. 中外超大城市热岛效应变化对比研究[J]. 自然资源遥感, 2021, 33(04): 200-208.
    [5] 刘艳芬, 黄茹鲜, 艾婧文, 等. 福州市城市公园的冷岛效应及其影响因素[J]. 南京林业大学学报(自然科学版), 2024, 48(03): 295-303.
    [6] Gunawardena K R, Wells M J, Kershaw T. Utilising green and bluespace to mitigate urban heat island intensity[J]. Science of The Total Environment, 2017, s584–585: 1040-1055. DOI:10.1016/j.scitotenv.2017.01.158.
    [7] Moyer A N, Hawkins T W. River effects on the heat island of a small urban area[J]. Urban Climate, 2017, 21. DOI:10.1016/j.uclim.2017.07.004.
    [8] 陈力行, 邓雅丽, 张樱子, 等. 成都市城市公园景观特征的“冷岛效应”研究[J]. 中国园林, 2023, 39(05): 132-138. DOI:10.19775/j.cla.2023.05.0132.
    [9] 徐梦耀, 国巧真, 杨光, 等. 城市公园降温指标与地表热场耦合关系[J]. 中国环境监测, 2023, 39(03): 120-128. DOI:10.19316/j.issn.1002-6002.2023.03.14.
    [10] Chen M, Jia W X, Yan L, et al. Quantification and mapping cooling effect and its accessibility of urban parks in an extreme heat event in a megacity[J]. 2021. DOI:10.1016/j.jclepro.2021.130252
    [11] 卓志雄, 吴天杰, 洪长兴, 等. 热岛效应视角下口袋公园对城市热环境的影响研究[J]. 林业资源管理,2022,(01):95-105. DOI:10.13466/j.cnki.lyzygl.2022.01.012.
    [12] Yang G Y, Yu Z W, Jrgensen G, et al. How can urban blue-green space be planned for climate adaption in high-latitude cities? A seasonal perspective[J]. Sustainable Cities and Society, 2020, 53:101932. DOI:10.1016/j.scs.2019.101932.
    [13] 杨清源, 邓睿, 汤伟宏, 等. 城市空间水体热环境效应研究——以重庆市主城七区为例[J]. 西安理工大学学报, 2024, 40(01): 15-26. DOI:10.19322/j.cnki.issn.1006-4710.2024.01.002.
    [14] Peng J, Liu Q, Xu Z, et al. How to effectively mitigate urban heat island effect? A perspective of waterbody patch size threshold[J]. Landscape and Urban Planning, 2020, 202:103873. DOI:10.1016/j.landurbplan.2020.103873.
    [15] Wang T, Tu H, Min B, et al. The Mitigation Effect of Park Landscape on Thermal Environment in Shanghai City Based on Remote Sensing Retrieval Method[J]. IJERPH, 2022, 19. DOI:10.3390/ijerph19052949.
    [16] Yao X, Yu K, Zeng X, et al. How can urban parks be planned to mitigate urban heat island effect in "Furnace cities"? An accumulation perspective[J]. Journal of Cleaner Production, 2022, 330:129852-. DOI:10.1016/j.jclepro.2021.129852.
    [17] Wu W B, Ma J, Banzhaf E, et al. A first Chinese building height estimate at 10 m resolution (CNBH-10 m) using multi-source earth observations and machine learning[J]. Remote Sensing of Environment, 2023. DOI:10.1016/j.rse.2023.113578.
    [18] Chen Z, Yu B, Yang C, et al. An extended time series (2000–2018) of global NPP-VIIRS-like nighttime light data from a cross-sensor calibration[J]. Earth System Science Data, 2021(3). DOI:10.5194/ESSD-13-889-2021.
    [19] 赵海月, 胡淼, 朱建宁, 等. 高密度中心城区蓝绿空间冷岛效应及其影响因素——以北京五环路以内地区为例[J]. 生态学报, 2023, 43(12): 4904-4919.
    [20] 张晓东, 赵银鑫, 马风华, 等. 基于遥感数据的银川市城市公园对城市热环境降温效应分析[J]. 水土保持通报, 2021, 41(05):338-347. DOI:10.13961/j.cnki.stbctb.2021.05.043.
    [21] Peng J, Dan Y, Qiao R, et al. How to quantify the cooling effect of urban parks? Linking maximum and accumulation perspectives[J]. Remote Sensing of Environment, 2021, 252(103873): 112135. DOI:10.1016/j.rse.2020.112135.
    [22] Yu Z W, Yang G Y, Zuo S D, et al. Critical review on the cooling effect of urban blue-green space: A threshold-size perspective[J]. Urban Forestry Urban Greening, 2020, 49:126630. DOI:10.1016/j.ufug.2020.126630.
    [23] 朱云凤, 王红, 覃书鸿, 等. 基于多源数据的南京市公园降温效应研究[J]. 南京林业大学学报(自然科学版), 2024, 48(03): 285-294.
    [24] 花利忠, 孙凤琴, 陈娇娜, 等. 基于Landsat-8影像的沿海城市公园冷岛效应——以厦门为例[J]. 生态学报, 2020, 40(22): 8147-8157.
    [25] Tan X, Sun X, Huang C, et al. Comparison of cooling effect between green space and water body[J]. Sustainable Cities and Society, 2021, 67:102711. DOI:10.1016/j.scs.2021.102711.
    [26] 赵芮, 申鑫杰, 田国行, 等. 郑州市公园绿地景观特征对公园冷岛效应的影响[J]. 生态学报, 2020, 40(09): 2886-2894.
    [27] 连欣欣, 刘兴诏, 李倩, 等. 城市“蓝绿空间”的降温效应研究进展[J]. 南方林业科学, 2021, 49(02): 68-72. DOI:10.16259/j.cnki.36-1342/s.2021.02.014.
    [28] 杨朝斌, 张亭, 胡长涛, 等. 蓝绿空间冷岛效应时空变化及其影响因素——以苏州市为例[J]. 长江流域资源与环境, 2021, 30(03): 677-688.
    [29] Allegrini J, Carmeliet J. Simulations of local heat islands in Zürich with coupled CFD and building energy models[J]. Urban Climate, 2017: S221209551730010X. DOI:10.1016/j.uclim.2017.02.003.
    [30] Qiu K B, Jia B Q. The roles of landscape both inside the park and the surroundings in park cooling effect,[J]. Sustainable Cities and Society, 2020. DOI:10.1016/j.scs.2019.101864.
    [31] Bartesaghi-Koc C, Osmond P, Peters A. Quantifying the seasonal cooling capacity of ''green infrastructure types'' (GITs): An approach to assess and mitigate surface urban heat island in Sydney, Australia[J]. Landscape and Urban Planning, 2020, 203(1).
    [32] 崔凤娇, 邵锋, 齐锋, 等. 植被对城市热岛效应影响的研究进展[J]. 浙江农林大学学报, 2020, 37(01): 171-181.
    [33] Zhu W, Sun J, Yang C, et al. How to Measure the Urban Park Cooling Island? A Perspective of Absolute and Relative Indicators Using Remote Sensing and Buffer Analysis[J]. Remote Sensing, 2021, 13(16):3154. DOI:10.3390/rs13163154.
    [34] Xiao, X D, Dong L, Yan H N, et al. The influence of the spatial characteristics of urban green space on the urban heat island effect in Suzhou Industrial Park[J]. SUSTAIN CITIES SOC, 2018, 2018, 40(-): 428-439. DOI:10.1016/j.scs.2018.04.002.
    [35] Yu Z, Guo X, Jorgensen G, et al. How can urban green spaces be planned for climate adaptation in subtropical cities?[J]. Ecological Indicators, 2017, 82(nov.):152-162. DOI:10.1016/j.ecolind.2017.07.002.
    [36] 董建权, 彭建. 绿地空间降温效应综述:景观调控视角[J]. 生态学报, 2024, 44(04): 1336-1346. DOI:10.20103/j.stxb.202308141757.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:10
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-07-17
  • 最后修改日期:2024-10-22
  • 录用日期:2024-10-22