江苏省植被覆盖度时空变化趋势及其驱动力分析
作者单位:

河北地质大学

中图分类号:

S157.1,TP79,X87

基金项目:

河北省科技厅中央引导地方科技发展资金项目(自由探索类基础研究)(236Z4201G),河北地质大学博士科研启动基金(BQ2024034)


Analysis of spatiotemporal change trends and drivers of vegetation coverage in Jiangsu
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • | | | |
  • 文章评论
    摘要:

    [目的]探究江苏省近十年植被覆盖度(fractional vegetation cover,FVC)的时空变化趋势及其驱动力,为江苏省全局掌握植被覆盖情况,宏观调控相关政策提供参考。[方法]选取2013-2022年全年的Landsat8数据作为数据源,基于GEE云计算平台,通过最大值合成江苏省逐年30m分辨率的NDVI影像,应用像元二分模型对江苏省2013—2022年的植被覆盖度进行估测,通过Sen趋势分析、Mann-Kendall显著性检验、变异系数、Hurst指数等方法,从多个方面分析其时空变化的趋势以及特征,并以FVC为因变量、夜间灯光数据为自变量构建一元线性回归模型,通过残差分析来量化FVC变化的驱动力,定量分析人类活动因子和气象因子对FVC变化的贡献率占比。[结果]2013-2022年,江苏省年均FVC为0.648,呈波动下降趋势,但仍然以极高和高FVC类型为主。FVC呈减少趋势的面积占比为51.85%,呈增加趋势的面积占比为45.91%;变异系数(coefficient of variation,CV)的平均值为0.16,整体波动幅度较低;Hurst指数的平均值为0.56,以弱持续性为主,弱反持续性次之,各类型整体呈现交错分布,退化与改善并存。人类活动对江苏省植被覆盖度变化的贡献度为正的区域占86.53%,气候变化对江苏省植被覆盖度变化的贡献率为正的区域占71.47%。[结论]近十年,江苏省整体植被覆盖良好,下降趋势逐渐平缓,苏北和苏中的植被覆盖度优于苏南,而苏北、苏中的植被退化情况要严重于苏南,变化的主要驱动力以气候变化和人类活动的共同作用为主,人类活动对FVC增加的贡献总体上比气候变化的贡献更大。

    Abstract:

    [Objective] This study aims to explore the spatiotemporal trends and driving forces of fractional vegetation cover (FVC) in Jiangsu Province over the past decade, providing a reference for comprehensively understanding the vegetation coverage and macro-regulating related policies in Jiangsu Province. [Methods] Using the Landsat8 data from 2013 to 2022 as the data source, annual 30m resolution NDVI images of Jiangsu Province were synthesized based on the maximum value composite method on the GEE cloud computing platform. The pixel dichotomy model was applied to estimate the vegetation cover from 2013 to 2022. Various methods, including Sen’s slope analysis, Mann-Kendall significance test, coefficient of variation (CV), and Hurst index, were used to analyze the spatiotemporal trends and characteristics of the vegetation cover. Additionally, a univariate linear regression model was constructed with FVC as the dependent variable and nighttime light data as the independent variable. Residual analysis was employed to quantify the driving forces of FVC changes and to analyze the contributions of human activities and climatic factors to FVC changes. [Results] From 2013 to 2022, the annual average FVC in Jiangsu Province was 0.648, showing a fluctuating downward trend but still predominantly consisting of very high and high FVC types. Areas with a decreasing FVC trend accounted for 51.85%, while areas with an increasing trend accounted for 45.91%. The average CV was 0.16, indicating relatively low overall fluctuation. The average Hurst index was 0.56, primarily indicating weak persistence, followed by weak anti-persistence, with an overall interwoven distribution of different types, and coexistence of degradation and improvement. Human activities positively contributed to changes in vegetation cover in 86.53% of the areas, while climate change positively contributed to changes in 71.47% of the areas. [Conclusion] Over the past decade, the overall vegetation cover in Jiangsu Province has been good, with the declining trend gradually flattening out. The vegetation cover in northern and central Jiangsu is better than in southern Jiangsu, but the degradation in northern and central Jiangsu is more severe than in southern Jiangsu. The main driving forces of the changes are the combined effects of climate change and human activities, with human activities contributing more to the increase in FVC than climate change.

    参考文献
    [1] Li Z ,Xue H ,Dong G, et al. Spatiotemporal Variation in Extreme Climate in the Yellow River Basin and its Impacts on Vegetation Coverage[J].Forests,2024,15(2).
    [2] Purevdorj T, Tateishi R, Ishiyama T, et al. Relationships between percent vegetation cover and vegetation indices. International Journal of Remote Sensing, 1998, 19: 3519-3535.
    [3] 赵楠, 赵颖慧, 邹海凤, 白晓红, 甄贞. 1990—2020年黑龙江省植被覆盖度的时空变化趋势及驱动力[J]. 应用生态学报, 2023, 34 (05): 1320-1330.
    [4] 张阳阳, 刘铁冬, 龚文峰, 段璇瑜, 孙雨欣, 邱梓轩. 2001~2021年海南岛植被覆盖时空动态变化与驱动力分析[J]. 甘肃农业大学学报, 2023, 58 (02): 145-154.
    [5] Yinan Wang, Xiangbing Kong, Kai Guo, Chunjing Zhao, Jintao Zhao. Spatiotemporal change in vegetation cover in the Yellow River Basin between 2000 and 2022 and driving forces analysis [J]. Frontiers in Ecology and Evolution, 2023, 11.
    [6] Zuo Yafan, Li Yuanhang, He Kangning, Wen Yusheng. Temporal and spatial variation characteristics of vegetation coverage and quantitative analysis of its potential driving forces in the Qilian Mountains, China, 2000–2020[J]. Ecological Indicators, 2022, 143.
    [7] 钱娅. 2006-2015年江苏省植被覆盖度的演变趋势与预测研究[D]. 南京信息工程大学, 2021.
    [8] 徐勇,奚砚涛,刘欣婷. 2000-2013年江苏省植被覆盖度时空变化特征[J]. 西南农业学报, 2016, 29 (02): 437-444.
    [9] Shulin C ,Zhenghao Z ,Xiaotong L , et al. Variation in Vegetation and Its Driving Force in the Pearl River Delta Region of China [J]. International Journal of Environmental Research and Public Health, 2022, 19 (16): 10343-10343.
    [10] He Z ,Yue T ,Chen Y , et al. Analysis of Spatial and Temporal Changes in Vegetation Cover and Driving Forces in the Yan River Basin, Loess Plateau [J]. Remote Sensing, 2023, 15 (17).
    [11] 王小娜,田金炎,李小娟,王乐,宫辉力,陈蓓蓓,李向彩,郭婧涵.Google Earth Engine云平台对遥感发展的改变.遥感学报,2022,26(2):299~309.
    [12] 刘垚燚,曾鹏,张然,等.基于 GEE 和 BRT 的 1984—2019 年长三角生态绿色一体化发展示范区植被覆盖度变化.应用生态学报, 2021,32(3):1033-1044.
    [13] Katarzyna K . Night light indicators of regional economic activity [J]. Regional Science Policy & Practice, 2022, 14 (4): 826-827.
    [14] 牛振生, 杨鑫, 陈超, 廖祥, 张小轩. 结合夜光遥感的成渝城市群城市经济发展特征变化分析[J]. 自然资源遥感.
    [15] Shangzhi L, Xuxiang L ,Meng Z . Spatial-Temporal Pattern Evolution of Xi’an Metropolitan Area Using DMSP/OLS and NPP/VIIRS Nighttime Light Data [J]. Sustainability, 2022, 14 (15): 9747-9747.
    [16] Jiménez Jiménez Sergio Iván, Marcial Pablo Mariana de Jesús, Ojeda Bustamante Waldo, Sifuentes Ibarra Ernesto, Inzunza Ibarra Marco Antonio, Sánchez Cohen Ignacio. VICAL: Global Calculator to Estimate Vegetation Indices for Agricultural Areas with Landsat and Sentinel-2 Data[J]. Agronomy, 2022, 12 (7).
    [17] 李晶,闫星光,闫萧萧等. 基于GEE云平台的黄河流域植被覆盖度时空变化特征 [J]. 煤炭学报, 2021, 46 (05): 1439-1450. DOI:10.13225/j.cnki.jccs.st21.0331.
    [18] Yijiao Li, Yuhong Song, Xiaozhu Cao, Linyun Huang, Jianqun Zhu. Temporal—Spatial Changes in Vegetation Coverage under Climate Change and Human Activities: A Case Study of Central Yunnan Urban Agglomeration, China[J]. Sustainability, 2024, 16 (2).
    [19] 刘雨亭,王磊,李谢辉等. 西南地区2000-2020年植被覆盖度时空变化与影响因素分析 [J]. 高原气象, 2024, 43 (01): 264-276.
    [20] 闫志远,张圣微,王怡璇. 基于GEE的1982—2021年内蒙古地区植被覆盖度时空动态及气候响应特征 [J]. 农业工程学报, 2023, 39 (15): 94-102.
    [21] Sunny A ,A.S. S ,Pal S S , et al. Analysis and interpretation of rainfall trend using mann-kendall''s and sen''s slope method [J]. Indian Journal of Ecology, 2021, 48 (2): 453-457.
    [22] 王佃来,宿爱霞,刘文萍. 几种植被覆盖变化趋势分析方法对比研究 [J]. 安徽农业科学, 2019, 47 (05): 10-14.
    [23] 王巨. 基于时序NDVI植被变化检测与驱动因素量化方法研究[D]. 兰州大学, 2020. DOI:10.27204/d.cnki.glzhu.2020.000544.
    [24] 刘逸娴,张军,唐莹,龙玉兰.昆明市2011—2020年植被覆盖时空变化特征分析及其归因.科学技术与工程,2023,23(19):8124~8132.
    [25] 张宝庆. 黄土高原干旱时空变异及雨水资源化潜力研究[D]. 西北农林科技大学, 2014.
    [26] 袁沫汐. 湖北省植被动态变化与物候对气候变化的响应[D]. 武汉大学, 2017.
    [27] 刘冬冬, 潘萍, 付佳, 欧阳勋志. 2000—2020年赣南植被覆盖时空变化特征及驱动因素 [J]. 应用生态学报, 2023, 34 (11): 2919-2928.
    [28] Shang G ,Wang X ,Li Y , et al. Heterogeneity Analysis of Spatio-Temporal Distribution of Vegetation Cover in Two-Tider Administrative Regions of China [J]. Sustainability, 2023, 15 (18).
    [29] 邓目丽,蒋馥根,龙依,等. 神木市植被NDVI动态变化及时空格局分析 [J]. 中南林业科技大学学报, 2023, 43 (07): 109-119+140.
    [30] 张慧龙,杨秀春,杨东,等. 2000-2020年内蒙古草地植被覆盖度时空变化及趋势预测 [J]. 草业学报, 2023, 32 (08): 1-13.
    [31] Hao LKunxi L ,Xiang Z , et al. Changes in Vegetation Greenness and Their Influencing Factors in Southern China [J]. Remote Sensing, 2022, 14 (14): 3291-3291.
    [32] Evans J, Geerken R. Discrimination between climate and human- induced dryland degradation. Journal of Arid Environments, 2004, 57(4): 535-554.
    [33] Wang F, Ge Q S. A new estimation of urbanization''s contribution to the warming trend in China. Journal of Climate, 2015, 28: 8923-8938.
    [34] 宋梦来,陈海涛,丁晗,崔乃心,亢戈霖,王玉秋.1990-2020年天津市植被覆盖度时空演变特征及影响因素分析.水土保持研究,2023,30(1):154~163.
    [35] 金凯,王飞,韩剑桥,史尚渝,丁文斌.1982—2015年中国气候变化和人类活动对植被NDVI变化的影响.地理学报,2020,75(5):961~974
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:23
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-07-18
  • 最后修改日期:2025-03-11
  • 录用日期:2025-03-11